K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2021

\(a,\) Vì \(AB=AD\) nên tam giác ABD cân tại A

Do đó \(\widehat{ADB}=\widehat{ABD}\)

Mà \(\widehat{ABD}=\widehat{BDC}\left(so.le.trong.vì.AB//CD\right)\)

\(\Rightarrow\widehat{ADB}=\widehat{BDC}\)

Vậy BD là p/g \(\widehat{ADC}\)

\(b,\) Vì ABCD là hình thang cân và BD là p/g nên \(\widehat{ADB}=\widehat{BDC}=\dfrac{1}{2}\widehat{ADC}=\dfrac{1}{2}\widehat{BCD}\)

Mà \(\widehat{BDC}+\widehat{BCD}=90^0\left(\Delta BDC\perp B\right)\)

\(\Rightarrow\dfrac{1}{2}\widehat{BCD}+\widehat{BCD}=90^0\Rightarrow\widehat{BCD}=60^0\)

\(\Rightarrow\widehat{BCD}=\widehat{ADC}=60^0\)

Ta có \(\widehat{BCD}+\widehat{ABC}=180^0\left(trong.cùng.phía.vì.AB//CD\right)\)

\(\Rightarrow\widehat{ABC}=\widehat{BAD}=180^0-60^0=120^0\)

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và...
Đọc tiếp

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.

2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang

3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.

4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=5 cm. tính CD

5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=3cm. tính độ dài các cạnh BC,CD.

6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.

a) chứng minh ằng HD=KC.

7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.

a) tú giác BEDC là hình gì?Vì sao?

b)Chứng minh BE=ED=DC.

c) biết góc A=500. Tính các góc của tứ giác BEDC.

8. cho tam giác đều ABC, hai đường cao BN,CM

a) chứng minh tứ giác BMNC là hình thang cân

b) Tính chu vi của hình thang BMNC là hình thang cân

3
7 tháng 6 2015

dài thế bạn nản luôn oi

7 tháng 6 2015

làm đc câu ào thì đc đâu nhất thiết phải làm hết chỉ là mik đưa mấy bài đóa để mấy bn chỉ đc bài nào thì chỉ thôi mà

10 tháng 1 2018

a) DDBC vuông  có B C D ^ = 2 B D C ^  nên A D C ^ = B C D ^ = 60 0  và  D A B ^ = C B A ^ = 120 0

b) Tính được DC = 2.BC = 12cm, suy ra PABCD = 30cm.

Hạ đường cao BK, ta có BK = 3 3 c m .

Vậy SABCD =  27 3 c m 2

bài 2: 

a: Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)

nên ΔOMN cân tại O

Ta có: \(\widehat{OMN}=\widehat{OPQ}\)

\(\widehat{ONM}=\widehat{OQP}\)

mà \(\widehat{OMN}=\widehat{ONM}\)

nên \(\widehat{OPQ}=\widehat{OQP}\)

Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)

nên ΔOQP cân tại O

b: Ta có: OM+OP=PM

ON+OQ=NQ

mà OM=ON

và OP=OQ

nên PM=NQ

Hình thang MNPQ có PM=NQ

nên MNPQ là hình thang cân

Bài 3: 

a: Ta có: \(\widehat{OAB}=\widehat{ODC}\)

\(\widehat{OBA}=\widehat{OCD}\)

mà \(\widehat{ODC}=\widehat{OCD}\)

nên \(\widehat{OAB}=\widehat{OBA}\)

Xét ΔOAB có \(\widehat{OAB}=\widehat{OBA}\)

nên ΔOAB cân tại O

Bài 3: 

a: Ta có: \(\widehat{OAB}=\widehat{ODC}\)

\(\widehat{OBA}=\widehat{OCD}\)

mà \(\widehat{ODC}=\widehat{OCD}\)

nên \(\widehat{OAB}=\widehat{OBA}\)

Xét ΔOAB có \(\widehat{OAB}=\widehat{OBA}\)

nên ΔOAB cân tại O

18 tháng 8 2019

Nhận cày thuê điểm hỏi đáp nha...

Quan tâm ib mình!!

19 tháng 6 2016

1/

  A B C D H K 1 2,7

Kẻ AH \(\perp\)CD , \(BK\perp CD\)

Xét tam giác vuông AHD và tam giác vuông BKC, có: góc ADH = góc BCK = 600 ; cạnh AH = BK

   => tam giác AHD = tam giác BKC (gcg) 

   => DH = KC 

Đặt a = DH (a > 0) => AH = \(\sqrt{1-x^2}\)

Có: Sin60 = \(\frac{AH}{AD}\Rightarrow\frac{\sqrt{3}}{2}=\sqrt{1-x^2}\Rightarrow1-x^2=\frac{3}{4}\Rightarrow x^2=\frac{1}{4}\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\left(n\right)\\x=-\frac{1}{2}\left(l\right)\end{array}\right.\)

    => x = 1/2 hay DH = KC = 1/2 

Mặt khác: HK = CD - (DH + KC) = 2,7 - (1/2 + 1/2) = 1,7 (m)

Tứ giác ABCD là hình chữ nhật (góc AHK = góc BKH = ABK = 900) => AB = HK = 1,7 (m)

    Vậy AB = 1,7m

2/ 

I D C A B 1 2

a/ Cm: tam giác ICD đều:

 Trong tam giác ICD : DB vừa là đường phân giác , vừa là đường cao => tam giác ICD là tam giác cân tại D 

 => ID = DC (1)

 => DB vừa là đường trung tuyến => BI = BC = 4cm => IC = 4 + 4 = 8cm (2)

 Có: góc IAB = IDC (đồng vị) , góc IBA = góc ICD (đồng vị) 

       mà góc IDC = góc ICD

    => góc IAB = góc IBA => tam giác IAB cân tại I => IA = IB = 4cm

    => ID = IA + AD = 4 + 4 = 8cm (3) 

 Từ (1), (2), (3) => ID = DC = IC = 8cm hay tam giác IDC đều

b/ Tính chu vi hình thang ABCD:

 Vì tam giác ICD đều => tam giác IAB đều => IA = AB = 4cm

 ID = DC = 8cm

 Vậy chu vi hình thang ABCD : AB + AD + BC + CD = 4 + 4 + 4 + 8 = 20(cm)

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc...
Đọc tiếp

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.

Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.

Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.

a)Chứng minh : IE=IF

b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.

Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân

Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB

a)Chứng minh :DB là phân giác góc ADC

b)Chứng minh : DB vuông góc với BC

0

a) Ta có: \(\widehat{ADC}=\widehat{BCD}\)(ABCD là hình thang cân)

mà \(\widehat{BCD}=60^0\)(gt)

nên \(\widehat{ADC}=60^0\)

\(\Leftrightarrow\widehat{BDC}=\dfrac{\widehat{ADC}}{2}=\dfrac{60^0}{2}=30^0\)

Xét ΔBDC có \(\widehat{BDC}+\widehat{BCD}=90^0\)

nên ΔBDC vuông tại B(Định lí tam giác vuông)