Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác AQDP có
góc AQD=góc APD=góc PAQ=90 độ
nên AQDP là hình chữ nhật
2: Vì AQDP là hình chữ nhật
nên AD cắt QP tại trung điểm của mỗi đường
=>K là trung điểm của AD
ΔDHA vuông tại H
mà HK là trung tuyến
nên HK=AD/2
a) có ^ABC = ^ACB (hiễn nhiên)
=> ^DBC = ^ECB, BC là cạnh chung
=> tgiác DBC = tgiác ECB
=> BE = CD mà AB = AC
=> AE/AB = AD/AC
=> ED // BC
=> BCDE là hình thang có ^ACB=^ABC
nên BCDE là hình thang cân
b) từ cm trên đã có BE = CD, ta chỉ cần cm BE = ED
Có: ^EDB = ^DBC (so le trong)
mà ^DBC = ^EBD (BD là phân giác)
=> ^EDB = ^DBC = ^EBD
=> tgiác BED cân tại E
=> BE = ED
=> BE=ED=DC
Tam giác AOB ~ tam giác COD
=> [TEX]\frac{OA}{OC}[/TEX] = [TEX]\frac{OB}{OD}[/TEX] =[TEX]\frac{AB}{CD}[/TEX]
=> [TEX]\frac{OA +OB}{OC +OD}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (1)
Tương tự ta cũng có tam giác IAB ~ tam giác IDC
=> [TEX]\frac{IA +IB}{ID + IC}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (2)
Từ (1)và (2) => đpcm
Câub:
DỄ C/M tam giác MBO ~ tam giác NDO ( MB/DN = OB/OD ; Góc MBO = góc ODN)
=> góc MOB = góc DON
=> M ; O ; N thẳng hàng (3)
Dễ c/m I ; M ; N thẳng hàng ( cái này cực dễ ) (4)
=> Từ (3)và (4) => đpcm
a: Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
DO đó: ΔADC=ΔBCD
b: Xét ΔEDC có AB//CD
nên EA/AD=EB/BC
mà AD=BC
nên EA=EB
=>ED=EC
Ta có: ΔEAB cân tại E
mà EI là đường trung tuyến
nên EI vuông góc với BA(1)
Ta có: ΔEDC cân tại E
mà EJ là đường trung tuyến
nên EJ vuông góc với CD
=>EJ vuông góc với AB(2)
Ta có: ΔABD=ΔBAC
nên góc OAB=góc OBA
=>ΔOAB cân tại O
=>OA=OB
mà IA=IB
nên OI la trung trực của BA
=>OI vuông góc với AB(3)
OA+OC=AC
OB+OD=BD
mà OA=OB; AC=BD
nên OC=OD
mà JD=JC
nên OJ là trung trực của CD
=>OJ vuông góc với CD
hay JO vuôg góc với AB(4)
từ (1), (2), (3) và (4) suy ra E,I,O,J thẳng hàng