Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Vì hình thang ABCD cân
=> AD = BC
=> ADC = BCD
=> AC = BD
Xét ∆ACD và ∆BDC ta có :
AD = BC
ADC = BCD
AC = BD
=> ∆ACD = ∆BDC (c.g.c)
=> DAC = CBD
Mà DAB = CBA ( hình thang ABCD cân )
=> OAB = OBA
=> ∆ OAB cân
Mà DOC = AOB = 60°
=> ∆OAB đều ( trong ∆ cân có 1 góc = 60° thì ∆ đó là ∆ đều )
=> AB = BO = AO (1)
Xét ∆ ABC và ∆BAD ta có :
DAB = ABC ( cmt)
AB chung
AD = BC
=> ∆ ABC = ∆BAD(c.g.c)
=> ACB = ADB
Mà ADC = BCD (cmt)
=> ODC = OCD
=> ∆ODC cân tại O
Mà DOC = 60°
=> ∆ODC đều
=> OD = OC = DC (2)
Từ (1) và (2)
Bạn tự cộng các cạnh vào với nhau nhé
Bài 2) Kẻ BK vuông góc với CD
Xét ∆ vuông ADH và ∆ vuông BCK ta có :
AD = BC
ADC = BCD
=> ∆ADH = BCK ( ch - gn)
=> AH = BK
=> DH = CK
Ta có AH vuông góc với DC
BK vuông góc với CD
=> AH //BK
Xét ∆ABK và ∆AHK ta có :
AH = BK(cmt)
AK chung
HAK = AKB ( so le trong)
=> ∆ABK = ∆AHK (c.g.c)
=> HK = AB
Ta có : CD = DH + HK + KC
=> DH + CK = CD - HK
Mà HK = AB (cmt)
=> DH + CK = CD - AB
Vì DH = CK
Mà 2DH = CD - AB
=> DH = ( CD - AB )/2
=> 2CK = CD - AB
=> CK = ( CD- AB)/2
=> DH = (CD - AB)/2 (dpcm)
bài 2:
a: Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
b: Ta có: OM+OP=PM
ON+OQ=NQ
mà OM=ON
và OP=OQ
nên PM=NQ
Hình thang MNPQ có PM=NQ
nên MNPQ là hình thang cân
\(a,\) Vì \(AB=AD\) nên tam giác ABD cân tại A
Do đó \(\widehat{ADB}=\widehat{ABD}\)
Mà \(\widehat{ABD}=\widehat{BDC}\left(so.le.trong.vì.AB//CD\right)\)
\(\Rightarrow\widehat{ADB}=\widehat{BDC}\)
Vậy BD là p/g \(\widehat{ADC}\)
\(b,\) Vì ABCD là hình thang cân và BD là p/g nên \(\widehat{ADB}=\widehat{BDC}=\dfrac{1}{2}\widehat{ADC}=\dfrac{1}{2}\widehat{BCD}\)
Mà \(\widehat{BDC}+\widehat{BCD}=90^0\left(\Delta BDC\perp B\right)\)
\(\Rightarrow\dfrac{1}{2}\widehat{BCD}+\widehat{BCD}=90^0\Rightarrow\widehat{BCD}=60^0\)
\(\Rightarrow\widehat{BCD}=\widehat{ADC}=60^0\)
Ta có \(\widehat{BCD}+\widehat{ABC}=180^0\left(trong.cùng.phía.vì.AB//CD\right)\)
\(\Rightarrow\widehat{ABC}=\widehat{BAD}=180^0-60^0=120^0\)