Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:-
- M là trung điểm của AB
⇒ AM = MB.
- N là trung điểm của BC
⇒ BN = NC.
- P là trung điểm của CD
⇒ CP = PD.
- Q là trung điểm của DA
⇒ DQ = QA.
Do đó, ta có: AM = MB = BN = NC = CP = PD = DQ = QA.
⇒ tứ giác MNPQ là hình bình hành.
Có:
- I là trung điểm của AC
⇒AI = IC.
- K là trung điểm của BD
⇒ BK = KD.
Do đó, ta có: AI = IC = BK = KD.
⇒ tứ giác INKQ là hình bình hành.
b)Gọi O là giao điểm của MP và NQ ta có:
MP // AB và NQ//CD ( M và N là trung điểm của AB và CD).
⇒ MP song song với NQ.
do đó :O nằm trên MP và NQ.
Gọi H là giao điểm của MI và NK ta có:
MI // AC và NK // BD (do I và K là trung điểm của đường chéo AC và BD).
⇒ MI song song với NK.
Do đó: H nằm trên cả MI và NK.
Gọi G là giao điểm của OH và BD ta có:
OH //MP và BD // MP (do O nằm trên MP và NQ, và H nằm trên MI và NK).
⇒ OH song song với BD.
doo đó: G nằm trên OH và BD.
⇒ I, O, K thẳng hàng.(ĐPCM)
a: Xét ΔBAC có BM/BA=BN/BC=1/2
nên MN//AC và MN=1/2AC
Xét ΔDAC có DQ/DA=DP/DC
nên PQ//AC và PQ/AC=DQ/DA=1/2
=>PQ=1/2AC
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔCAB có CI/CA=CN/CB=1/2
nên IN//AB và IN=1/2AB
Xét ΔDAB có DQ/DA=DK/DB=1/2
nên QK//AB và QK=1/2AB
=>IN//QK và IN=QK
=>INKQ là hình bình hành
b: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường
=>O là trung điểm của NQ
INKQ là hbh
=>IK cắt NQ tại trung điểm của mỗi đường
=>I,O,K thẳng hàng
a) ABCD là hình thang nên AB//CD
CD=2AB ==>AB/CD=1/2
AB//CD, áp dụng định lý Ta-let, ta có
OA/OC=OB/OD=AB/CD=1/2
=>OA/OC=1/2 => OC=2OA
B) Ta có : OA/OC=OB/OD=AB/CD=1/2
==> OD/OB = 2 ==>OD = 2OB
*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);
OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD
c)
Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB
MI//AB, áp dụng hệ quả của định lý Ta-let, ta có
MI/AB = DM/AD = DI/IB (1)
IN//AB, áp dụng định lý Ta-let, ta có
CN/BC=DI/IB (2)
Từ (1) và (2), ta có
DM/AD=CN/BC
d)
KN//AB, áp dụng hệ quả của định lý Ta-let, ta có
KN/AB=CN/BC
Ta có :KN/AB=CN/BC và MI/AB=DM/AD
mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Qua O kẻ các đường thẳng lần lượt vuông góc với AB,BC,CD,DA tại E,G,F,H.Chứng minh:
a) Bà điểm E,O,F thẳng hàng và ba điểm G,O,H thẳng hàng
b) Tứ giác EGFH lầ hình vuông