Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔACD và ΔBDC có
AC=BD
AD+BC
DC chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{OCD}=\widehat{ODC}\)
Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)
nên ΔODC cân tại O
Suy ra: OC=OD
Ta có: OA+OC=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
a) Vì ABCD là hình thang cân
=> AD = BC
=> ADC = BCD
=> AC = BD
=> DAB = CBA
Xét ∆ADC và ∆BCD ta có :
AD = BC
ADC = BCD
DC chung
=> ∆ADC = ∆BCD (c.g.c)
=> BDC = ACD ( tương ứng)
=> ∆DOC cân tại O.
b) Mà DAB + BAE = 180° ( kề bù)
ABC + ABE = 180° ( kề bù )
Mà DAB = CBA
=> EAB = EBA
=> ∆EAB cân tại E
Gọi giao điểm AB và EO là H
EO và DC là G
Mà AB//CD
=> BAC = ACD ( so le trong)
=> ABD = ACD ( so le trong)
Mà ACD = BDC
=> CAB = ABD
=> ∆ABO cân tại O
=> EO là trung trực và là phân giác ∆AOB
=> AOH = BOH ( phân giác )
Mà AOH = COG ( đối đỉnh)
BOH = DOG ( đối đỉnh)
Mà AOH = BOH ( EO là phân giác)
=> OG là phân giác DOC
Mà ∆DOC cân tại O
=> OG là trung trực DC
Hay EO là trung trực DC
Tham khảo a làm rồi nha: https://hoc24.vn/cau-hoi/.1904701261424
2)
Có: \(\left\{{}\begin{matrix}AB=AD\left(gt\right)\\AD=BC\left(2.cạnh.bên.hình.thang.cân\right)\end{matrix}\right.\)
\(\Rightarrow AB=BC\Rightarrow\Delta ABC.cân.tại.B\)
Mà AB // ED (gt)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(so.le.trong\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{ACD}\)
=> CA là tia phân giác của góc C.