K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

27 tháng 6 2021

a, do CC' là chiều cao \(=>CC'\perp AD\)

theo giả thiết \(AD=10cm=>AD^2=100cm\)

mà \(AC=8cm,DC=6cm=>AC^2+DC^2=100cm\)

\(=>AC^2+CD^2=AD^2\)=>\(\Delta ADC\) vuông tại C(pytago đảo)

áp dụng hệ thức lượng\(CC'.AD=AC.CD=>CC'=\dfrac{8.6}{10}=4,8cm\)

b,theo t/c hình thang cân \(=>\left\{{}\begin{matrix}AB=CD=6cm\\AC=BD=8cm\end{matrix}\right.\)

hạ thêm \(BE\perp AD\)

áp dụng hệ thức lượng\(=>\left\{{}\begin{matrix}C'D=\dfrac{CD^2}{AD}\\AE=\dfrac{AB^2}{AD}\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}C'D=\dfrac{6^2}{10}=3,6cm\\AE=\dfrac{6^2}{10}=3,6cm\end{matrix}\right.\)

\(=>EC'=AD-AE-C'D=10-3,6-3,6=2,8cm\)

ta chứng minh được \(BEC'C\) là hình chữ nhật\(=>EC'=BC=2,8cm\)

\(S\left(ABCD\right)=\dfrac{1}{2}.\left(AD+BC\right).CC'=\dfrac{1}{2}\left(10+2,8\right).4,830,72cm^2\)

 

27 tháng 6 2021

đoạn cuối ấy tôi viết vôi quá

\(S\left(ABCD\right)=\dfrac{1}{2}\left(AD+BC\right).CC'=\dfrac{1}{2}\left(10+2,8\right).4,8=30,72cm^2\)

29 tháng 6 2021

Kẻ \(AE,BF\bot CD\)

Vì \(AE\parallel BF(\bot CD),AB\parallel EF\) (ABCD là hình thang cân)

\(\Rightarrow ABFE\) là hình bình hành có \(\angle AEF=90\Rightarrow ABFE\) là hình chữ nhật

\(\Rightarrow AB=FE\)

Dễ dàng chứng minh được \(DE=CF\left(\Delta ADE=\Delta BFC\right)\)

\(\Rightarrow DE=\dfrac{CD-AB}{2}=\dfrac{7-3}{2}=2\)

\(\Rightarrow AE=\sqrt{AD^2-DE^2}=\sqrt{5^2-2^2}=\sqrt{21}\)

\(\Rightarrow S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right).AE=\dfrac{1}{2}\left(7+3\right).\sqrt{21}=5\sqrt{21}\)