Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 sai đề rồi bạn. Nếu BEMD là ht cân thật thì \(\widehat{ABC}=\widehat{MDB}\)mà \(\widehat{MDB}=\widehat{ACB}\)(đồng vị) => \(\widehat{ABC}=\widehat{ACB}\)=> tam giác ABC cân( trái với đề bài)
Theo định lý pytago =>DC=\(\sqrt{CB^2+DB^2}\)=\(\sqrt{15^2+20^2}\)=25
\(\widehat{HBD}\)+ \(\widehat{D}\)=900 \(\widehat{C}\)+\(\widehat{D}\)=900 => \(\widehat{C}\)=\(\widehat{HBD}\) =>\(\Delta\)HBD~\(\Delta\)BCD(gg)
=>\(\frac{HB}{BC}\)=\(\frac{HD}{BD}\)<=> \(\frac{HB}{15}\)=\(\frac{HD}{20}\)(1) Mặt khác: BC*BD=CD*BH=>BH=15*20/25=12
Thay vào (1) =>HD=12/15 *20=16 =>HC =9
ABCD là hình thang cân=> BH cũng chính là đường cao của hình thang
Đáy nhỏ AB dài là: 25 - 9 - 9 =7
Diện tích hình thang ABCD là:(7+25)*12/2=192(dvdt)
Tự vẽ hình
Qua M dựng đường thẳng đường thẳng song song với AD cắt AB tại I , cắt CD tại H
Dựng MK song song với AB cắt BC tại K . HJ song song với MA cắt AD tại J
Tứ giác IJHK là cần tìm
Theo cách dựng ta thấy :
\(\widehat{IMK}=\widehat{IHC}\) ( 2 góc đồng vị ; MK // CD )
\(\widehat{IHC}=\widehat{ADC}\) ( 2 góc đồng vị )
\(\widehat{ADC}=\widehat{BCD}\) ( ABCD - hình thang cân )
\(\widehat{BKM}=\widehat{BCD}\) ( 2 góc đồng vị )
\(\Rightarrow\)\(\widehat{IHC}=\widehat{BCD}\left(=\widehat{ADC}\right)\)
\(\Rightarrow\)\(\widehat{IMK}=\widehat{BKM}\)
Do đó : MIBK và MHCK là 2 hình thang cân
\(\Rightarrow\)\(BM=IK\)
\(CM=HK\)
* Hình thang MAJH có MH // AJ và MA // HJ Nên JH = MA
* Hình thang MDJI có IJ // MD và MI // ID
Vậy tứ giác IJHK nội tiếp hình thang cân có các cạnh JH = MA ; IK = MB ; HK = MC ; IJ= MD ( đpcm )