Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔADH vuông tại H và ΔBCK vuông tại K có
AD=BC(ABCD là hình thang cân)
\(\widehat{D}=\widehat{C}\)(ABCD là hình thang cân)
Do đó: ΔADH=ΔBCK(cạnh huyền-góc nhọn)
Suy ra: DH=CK(hai cạnh tương ứng)
kẻ bk ⊥ dc ag ⊥ dc
abcd là ht cân
suy ra kc +dg+gk=dc
2kc +ab =dc
kc= dc -ab trên 2 = 10-4 trên 2=3 cm
bk mũ 2 = bc mũ 2 - kc mũ 2 = 5 mũ 2 - 3 mũ 2 =4cm
ta có ih song song kb
di = ib
suy ra ih là đường tb
suy ra ih =1 phần 2 kb = 1 phần 2 nhân 4 =2 cm
Cho hình thang ABCD (AB//CD) gọi IQ lần lượt là AD BC biết AB=10cm CD=20cm tính độ dài đoạn thẳng PQ
Hình thang ABCD có:
I là trung điểm của đoạn thẳng AD (gt)
Q là trung điểm của đoạn thẳng BC (gt)
\(\Rightarrow\)IQ là đường trung bình của hình thang ABCD
\(\Rightarrow IQ=\frac{AB+CD}{2}\)
Thay \(IQ=\frac{10+20}{2}\)
\(\Rightarrow IQ=15\)
Vậy IQ = 15cm
Diện tích hình thang cân ABCD ạ