Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: CB=CE
=>\(\hat{CBE}=\hat{CEB}\)
mà \(\hat{CBE}=\hat{BCD}\) (hai góc so le trong, BE//CD)
và \(\hat{BCD}=\hat{ADC}\) (ABCD là hình thang cân)
nên \(\hat{AEC}=\hat{ADC}\) (2)
Ta có: AE//DC
=>\(\hat{AEC}+\hat{ECD}=180^0\) (hai góc trong cùng phía)(1)
Ta có: AB//CD
=>\(\hat{ADC}+\hat{DAE}=180^0\) (hai góc trong cùng phía)(3)
Từ (1),(2),(3) suy ra \(\hat{ECD}=\hat{EAD}\)
Xét tứ giác AECD có
\(\hat{AEC}=\hat{ADC}\)
\(\hat{DAE}=\hat{DCE}\)
Do đó: AECD là hình bình hành
ta có : góc ABD=góc BDC (2 góc so le trong của 2 đt ab//cd)
góc DBC=góc ABD (BD là đường chéo của hình thang cân ABCD)
suy ra góc BDC=góc DBC
suy ra tam giác BCD cân tại C
suy ra DC=BC
mà BC=AE (gt)
suy ra DC =AE
Ta có góc EAD = góc ADC (so le trong của 2 đt EB//CD)
Tứ giác AECD có DC=AE ; góc EAD= góc ADC
suy ra AECD là hình bình hành (đpcm)

a) Xét tứ giác ABED có
AB//ED(gt)
AB=ED
Do đó: ABED là hình bình hành(Dấu hiệu nhận biết hình bình hành)

