K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

24 tháng 11 2023

a: Xét ΔBAC có

M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình của ΔABC

=>MN//AC và MN=AC/2

b: Xét ΔCDA có

P,Q lần lượt là trung điểm của CD,DA

=>PQ là đường trung bình của ΔCDA

=>PQ//AC và \(PQ=\dfrac{AC}{2}\)

MN//AC

PQ//AC

Do đó: MN//PQ

\(MN=\dfrac{AC}{2}\)

\(PQ=\dfrac{AC}{2}\)

Do đó: MN=PQ

Xét tứ giác MNPQ có

MN=PQ

MN//PQ

Do đó: MNPQ là hình bình hành

Sửa đề: M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA

a: AB//DC

\(P\in DC\)

Do đó: AB//DP

AB=DC/2

DP=DC/2=PC

Do đó: AB=DP=CP

Xét tứ giác ABPD có

AB//PD

AB=PD

Do đó: ABPD là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình của ΔBAC

=>MN//AC và MN=AC/2(1)

Xét ΔADC có

Q,P lần lượt là trung điểm của DA,DC

=>QP là đường trung bình

=>QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

Do đó: MNPQ là hình bình hành

c: ABPD là hình bình hành

=>AP cắt BD tại trung điểm của mỗi đường

=>E là trung điểm của AP và BD

Xét ΔADP có

Q,E lần lượt là trung điểm của AD,AP

=>QE là đường trung bình

=>QE//DP

=>QE//DC

Xét ΔBDC có

E,N lần lượt là trung điểm của BD,BC

=>EN là đường trung bình

=>EN//DC

EN//DC

QE//DC

mà QE và EN có điểm chung là E

nên Q,E,N thẳng hàng

23 tháng 11 2015

tớ giải rồi , xem bên dưới nha

Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MNPQ là hình bình hành(5)

Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2=BD/2=MQ(3) và MN//AC
=>MN vuông góc với MQ(4)

Từ (3), (4)và (5) suy ra MNPQ là hình vuông

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MNPQ là hình bình hành(5)

Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2=BD/2=MQ(3) và MN//AC
=>MN vuông góc với MQ(4)

Từ (3), (4)và (5) suy ra MNPQ là hình vuông

23 tháng 11 2015

Trong tam giác ABD có: MQ là đường trung bình 

=> MQ = 1/2 BD (1)

Trong tam giác ABC có : MN là đường trung bình 

=> MN = 1/2 AC (2)

mà AC = BD và AC vuông góc với BD (3)

Từ (1) (2) và (3) => MQ = MN và MQ vuông góc với MN

=> tứ giác MNPQ là hình vuông