Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Như - Toán lớp 8 - Học toán với OnlineMath
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a) Lấy I là trung điểm của AD. Theo đề bài ta có AI = ID = AB = BC.
Xét tứ giác AIBC có AI song song và bằng BC nên AIBC là hình bình hành. Lại có góc A vuông nên AIBC là hình chữ nhật. Mà AI = AB nên AIBC là hình vuông.
Từ đó ta có : IC vuông góc với AD và IC = AI = ID.
Xét tam giác ACD có trung tuyến CI đồng thời là đường cao nên nó là tam giác cân tại C. Lại có trung tuyến ứng với cạnh AD bằng một nửa cạnh đó nên tam giác ACD vuông tại C.
Vậy nên tam giác ACD là tam giác vuông cân tại C.
b) Gọi J là trung điểm AN. Gọi C' là điểm đối xứng với C qua J.
Xét tam giác vuông ACN có CJ là đường trung bình ứng với cạnh huyền nên AJ = JN = JC. Vậy thì \(\widehat{JCA}=\frac{1}{2}\widehat{C'JA}\)
Tương tự như vậy, xét tam giác vuông AMN, ta cũng có \(\widehat{JNM}=\frac{1}{2}\widehat{AJM}\)
Xét tam giác C'MC có MJ = JC = JC' (Cùng bằng một nửa AM). Vậy nên tam giác C'MN vuông tại M. Khi đó tương tự như bên trên ta có:
\(\widehat{JCM}=\frac{1}{2}\widehat{C'JM}\)
Từ đó ta có:
\(\widehat{JNM}=\frac{1}{2}\widehat{AJM}=\frac{1}{2}\left(\widehat{C'JM}-\widehat{C'JA}\right)=\frac{1}{2}\widehat{C'JM}-\frac{1}{2}\widehat{C'JA}=\widehat{JCM}-\widehat{JCA}=\widehat{ACM}\)
Do AIBC là hình vuông nên ta có ngay \(\widehat{ACM}=45^o\Rightarrow\widehat{ANM}=45^o\)
Tam giác vuông AMN có \(\widehat{AMN}=45^o\) nên AMN là tam giác vuông cân tại M.
cho a,b thuộc N.Chứng minh
a. (a+b).(a+b)=a.a+2.a.b+b.b
b. (a-b).(a-b)=a2-2ab+b2
c. (a+b).(a-b)=a2-b2
a) Xét tứ giác ABEC có AB // CE; AC // BE .
Vậy nên ABEC là hình bình hành. Suy ra AB = CE.
Do MN là đường trung bình hình thang ABCD nên ta có :
\(MN=\frac{AB+DC}{2}=\frac{CE+DC}{2}=\frac{DE}{2}.\)
b) Do ABCD là hình thang cân nên ta có:
\(AD=BC;DB=AC\)
Xét tam giác ABD và tam giác BAC có:
Cạnh AB chung
AD = BC
BD = AC
\(\Rightarrow\Delta ABD=\Delta BAC\left(c-c-c\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{BAC}\) hay \(\widehat{ABO}=\widehat{BAO}\)
Xét tam giác OAB có \(\widehat{ABO}=\widehat{BAO}\) nê OAB là tam giác cân tại O.
c) Do ABEC là hình bình hành nên AC = BE
Lại có AC = BD nên BD = BE
Suy ra tam giác BDE cân tại B.
Tam giác cân BDE có BH là đường cao nên đồng thời là đường trung tuyến.
Lại có theo câu a thì MN = DE/2
Giả thiết lại cho MN = BH. Vậy nên BH = DE/2
Xét tam giác BDE có trung tuyến BH bằng một nửa cạnh tướng ứng nên BDE là tam giác vuông tại B.
Vậy BDE là tam giác vuông cân tại B.