Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Chứng minh GE=EF=FH
Ta có; BE+EC=BC
DF+FA=DA
mà BE=DF và BC=DA
nên EC=FA
Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó; BEDF là hình bình hành
=>BF=DE
Xét ΔGAF có BE//AF
nên \(\frac{BE}{AF}=\frac{GE}{GF}\)
=>\(\frac{GE}{GF}=\frac13\)
=>GF=3GE(1)
Ta có; BE+EC=BC
=>EC=BC-BE
=>\(EC=BC-\frac13BC=\frac23BC\)
Ta có: \(DF=\frac13DA\)
DA=BC
Do đó: \(DF=\frac13BC\)
=>\(\frac{DF}{EC}=\frac13:\frac23=\frac12\)
Xét ΔHEC có FD//EC
nên \(\frac{FD}{EC}=\frac{HF}{HE}\)
=>\(\frac{HF}{HE}=\frac12\)
=>F là trung điểm của HE
=>HF=FE
Ta có: \(\hat{GBE}+\hat{ABE}=180^0\) (hai góc kề bù)
\(\hat{FDH}+\hat{FDC}=180^0\) (hai góc kề bù)
mà \(\hat{ABE}=\hat{FDC}\) (ABCD là hình bình hành)
nên \(\hat{GBE}=\hat{HDF}\)
Xét ΔGBE và ΔHDF có
\(\hat{GBE}=\hat{HDF}\)
BE=DF
\(\hat{GEB}=\hat{HFD}\left(=\hat{FEC}\right)\)
Do đó: ΔGBE=ΔHDF
=>GE=HF
=>GE=HF=FE

a) Xét tứ giác ABED có
AB//ED(gt)
AB=ED
Do đó: ABED là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Câu thứ nhất sai đề bạn ạ vì ko có tia đối của tia AD
Ta có: CB=CE
=>\(\hat{CBE}=\hat{CEB}\)
mà \(\hat{CBE}=\hat{BCD}\) (hai góc so le trong, BE//CD)
và \(\hat{BCD}=\hat{ADC}\) (ABCD là hình thang cân)
nên \(\hat{AEC}=\hat{ADC}\) (2)
Ta có: AE//DC
=>\(\hat{AEC}+\hat{ECD}=180^0\) (hai góc trong cùng phía)(1)
Ta có: AB//CD
=>\(\hat{ADC}+\hat{DAE}=180^0\) (hai góc trong cùng phía)(3)
Từ (1),(2),(3) suy ra \(\hat{ECD}=\hat{EAD}\)
Xét tứ giác AECD có
\(\hat{AEC}=\hat{ADC}\)
\(\hat{DAE}=\hat{DCE}\)
Do đó: AECD là hình bình hành
ta có : góc ABD=góc BDC (2 góc so le trong của 2 đt ab//cd)
góc DBC=góc ABD (BD là đường chéo của hình thang cân ABCD)
suy ra góc BDC=góc DBC
suy ra tam giác BCD cân tại C
suy ra DC=BC
mà BC=AE (gt)
suy ra DC =AE
Ta có góc EAD = góc ADC (so le trong của 2 đt EB//CD)
Tứ giác AECD có DC=AE ; góc EAD= góc ADC
suy ra AECD là hình bình hành (đpcm)