K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔACD và ΔBDC có

AC=BD

AD=BC

CD chung

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ODC}=\widehat{OCD}\)

Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)

nên ΔOCD cân tại O

Suy ra: OC=OD

Ta có: OC+OA=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

a) Xét ∆ACD và ∆BDC ta có :

DC chung

BC = AD (ABCD là hình thang cân )

ADC = BCD ( ABCD là hình thang cân)

=> ∆ACD = ∆BDC (c.g.c)

=> BDC = ACD (tg ứng) 

=> ∆DOC cân tại O

=> OC = OD

Mà AB//DC 

ABO = ODC ( so le trong) 

BAO = OCN (so le trong) 

Mà BDC = ACD (cmt)

=> OAB = ABO 

=> ∆AOB cân tại O 

=> OA = OB 

b) Xét ∆OND và ∆ONC ta có 

OC = OD (cmt)

ODC = ONC (cmt)

ON chung 

=> ∆OND = ∆ONC (c.g.c) 

=> DN = NC(1)

Mà OND + ONC = 180 độ( kề bù) 

Mà OND = ONC = 180/2 = 90 độ

=> ON vuông góc với AC(2)

Từ (1) và (2) ta có ∆ cân AOB có trung trực OM đồng thời có trung tuyến OM (3)

Chứng minh tương tự ta có :

∆OMA = ∆OMB 

=> AM = MB(4)

=> OMB + OMA = 180 độ(kề bù )

=> OMB = OMA = 180/2 = 90 độ

=> OM vuông góc với AB(5)

Từ (4) và(5) ta có :∆ cân DOC có trung trực ON đồng thời là trung tuyến ON (6)

Từ (3) và (5) => M , O , N thẳng hàng

13 tháng 11 2021

alodgdhgjkhukljhkljyutfruftyhf

31 tháng 8 2017

 1] 
a] 

Ta có: 
AI/IM = AB/DM 
BK/KM = AB/MC 

Do DM =MC 
=> AI/IM = BK/KM 

=> IK//AB 

b] 
IE/DM = AI/AM 
KF/MC = BK/BM 

Mà AI/AM = BK/BM (do IK//AB) 

=> IE/DM = KF/MC mà DM=MC 
=> IE = KF 

2] 
a} 
Ta có: 
AE/EK = AB/DK 
BF/FI = AB/CI 
Do ABID và ABCK là h..b.hành 
=> CK=DI =AB 
=> DK = CI = CD -AB 
=> AE/EK = NF/FI 

=> EF//AB 

b} 

Ta có EF/CK =AF/AC = AB/CD 
=> EF.CD = CK.AB = AB^2 (do CK =AB) 

3] 
a} 
Ta có: 
MB/MF = MC/MA (Xét BC//AF) 
ME/MB = MC/MA (Xét CE//AB) 

=> MB/MF = ME/MB 
=> MB^2 = ME.MF 

b} 

BM/MF = MC/AC (Xét BC//AF) 
BM/ME = AM/AC (Xét CE//AB) 

=> BM/MF + BM/ME = MC/AC + AM/AC =1 

=> BM/MF + BM/ME =1 

=> 1/BF+1/BE=1/BM