Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔABC và ΔBAD có
AB chung
BC=AD
AC=BD
Do đó: ΔABC=ΔBAD
Suy ra: \(\widehat{BAC}=\widehat{ABD}\)
hay \(\widehat{EAB}=\widehat{EBA}\)
hay ΔEAB cân tại E
a) Xét ΔDKA và ΔCHB có:
∠AKD = ∠BHC = 900 (vì AK và BH là các đường cao)
AD = BC (cạnh bên của hình thang cân)
∠ADK = ∠BCH ( định nghĩa hình thang cân)
=> ΔDKA = ΔCHB (cạnh huyền - góc nhọn)
=> DK = CH (2 cạnh tương ứng)
Vậy DK = CH
b) Tứ giác ABHK là hình thang có 2 cạnh bên AK và BH song song nên AB = KH = 3 cm
Ta có: DK + KH + HC = 13
Mà DK = CH
=> 2HC + 3 = 13
=> 2HC =10
=>HC =5 (cm)
Áp dụng định lí Py-ta-go cho ΔBHC vuông tại H được:
BC2 = HC2 + BH2
=> BH2 = BC2 - HC2
=> BH2 = 132 - 52
=> BH2 = 144
=> BH = 12 (cm) (vì BH >0)
Vậy BH = 12 cm
Bài 1:
Xét ΔABC và ΔBAD có
AB chung
BC=AD
AC=BD
Do đó:ΔABC=ΔBAD
Suy ra: \(\widehat{BAC}=\widehat{ABD}\)
hay \(\widehat{EAB}=\widehat{EBA}\)
hay ΔEAB cân tại E
a: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có
AD=BC
góc D=góc C
=>ΔAKD=ΔBHC
=>CH=DK
b: Xét tứ giác ABHK có
AB//HK
AK//HB
=>ABHK là hình bình hành
=>AB=HK=3cm
=>DK+HC=10cm
=>DK=HC=10/2=5cm
BH=căn 13^2-5^2=12cm
Bài 2:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a: Xét ΔADK vuông tại K và ΔBCH vuông tại H có
AD=BC
\(\widehat{D}=\widehat{C}\)
Do đó: ΔADK=ΔBCH
Suy ra: DK=CH
a: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có
AD=BC
góc D=góc C
=>ΔAKD=ΔBHC
=>CH=DK
Xét tứ giác ABHK có
AB//HK
AK//HB
=>ABHK là hình bình hành
=>AB=HK
b: KH=AB=7cm
=>DK+HC=13-7=6cm
=>DK=HC=6/2=3cm
\(BH=\sqrt{13^2-3^2}=\sqrt{160}=4\sqrt{10}\left(cm\right)\)
\(S_{ABCD}=\dfrac{1}{2}\cdot BH\cdot\left(AB+CD\right)\)
\(=\dfrac{1}{2}\cdot4\sqrt{10}\left(7+13\right)=40\sqrt{10}\left(cm^2\right)\)