Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có:
ED,EAED,EA là tiếp tuyến của (O)
→ED⊥OD,EA⊥OA⇒ˆADE=ˆOAE=90o→ED⊥OD,EA⊥OA⇒ADE^=OAE^=90o
EDOAEDOA có ˆADE+ˆOAE=180oADE^+OAE^=180o
⇒EDOA⇒EDOA nội tiếp đường tròn đường kính (OE)
→ˆDOA+ˆDEA=180o→DOA^+DEA^=180o
Mà ABCDABCD là hình thang cân
→ˆDMA=ˆDBA+ˆCAB=2ˆDBA=ˆDOA→DMA^=DBA^+CAB^=2DBA^=DOA^
→ˆDMA+ˆAED=180o→AEDM→DMA^+AED^=180o→AEDM nội tiếp được trong một đường tròn
2. Từ câu 1
→ˆEMA=ˆEDA=ˆDBA=ˆCAB→EMA^=EDA^=DBA^=CAB^
Vì EDED là tiếp tuyến của (O),ABCDABCD là hình thang cân
→EM//AB→EM//AB
3. Ta có:
EM//AB→HK//AB→HMAB=DMDB=CMCA=MKABEM//AB→HK//AB→HMAB=DMDB=CMCA=MKAB
→MH=MK→M→MH=MK→M là trung điểm HK
Hình đa giác TenDaGiac1: DaGiac[B, C, 4] Góc α: Góc giữa E, A, E' Góc α: Góc giữa E, A, E' Góc α: Góc giữa E, A, E' Đoạn thẳng f: Đoạn thẳng [B, C] của Hình đa giác TenDaGiac1 Đoạn thẳng g: Đoạn thẳng [C, D] của Hình đa giác TenDaGiac1 Đoạn thẳng h: Đoạn thẳng [D, A] của Hình đa giác TenDaGiac1 Đoạn thẳng i: Đoạn thẳng [A, B] của Hình đa giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [E, A] Đoạn thẳng N: Đoạn thẳng [A, F] Đoạn thẳng N: Đoạn thẳng [A, F] Đoạn thẳng m: Đoạn thẳng [B, D] Đoạn thẳng l: Đoạn thẳng [E, F] Đoạn thẳng p: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [M, F] Đoạn thẳng r: Đoạn thẳng [E, G] B = (-1.34, 1.78) B = (-1.34, 1.78) B = (-1.34, 1.78) C = (3.1, 1.78) C = (3.1, 1.78) C = (3.1, 1.78) Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm E: Điểm trên f Điểm E: Điểm trên f Điểm E: Điểm trên f Điểm F: Giao điểm của k, g Điểm F: Giao điểm của k, g Điểm F: Giao điểm của k, g Điểm M: Giao điểm của j, m Điểm M: Giao điểm của j, m Điểm M: Giao điểm của j, m Điểm H: Giao điểm của n, l Điểm H: Giao điểm của n, l Điểm H: Giao điểm của n, l Điểm G: Giao điểm của N, m Điểm G: Giao điểm của N, m
Cô hướng dẫn nhé
a) Do ABCD là hình vuông nên \(\widehat{BEN}=45^o\), vậy thì \(\widehat{BEN}=\widehat{BAN}\) hay ABEN là tứ giác nội tiếp.
Tương tự với tứ giác ADFN.
b) Do ABEN là tứ giác nội tiếp nên \(\widehat{ANE}=180^o-\widehat{ABE}=90^o\) hay \(EN⊥AF\)
Tương tự \(FM⊥AE\)
Xét tam giác AEF có AH, FM, EN là ba đường cao nên chúng đồng quy.
c) Dễ thấy tứ giác EMNF nội tiếp nên \(\widehat{MNE}=\widehat{MFE}\)( Hai góc nội tiếp cùng chắn một cung)
Mà tứ giác ABEN nội tiếp nên \(\widehat{MNE}=\widehat{BAE}\)( Hai góc nội tiếp cùng chắn một cung)
và \(\widehat{MFE}=\widehat{EAH}\) ( Cùng phụ góc AEF)
Vậy nên \(\widehat{BAE}=\widehat{EAH}\)
Suy ra \(\Delta ABE=\Delta AHE\) (Cạnh huyền góc nhọn) hay AH = AB không đổi.
Lại có AH vuông góc EF tại H nên EF luôn tiếp xúc với đường tròn tâm A, bán kinh AB.