Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật
2/
a/ hình thang ABCD có
AB // EF
==> AB // KF
xét tam giác ABC có
F là trung điểm của BC
AB // KF
==> KF là đường trung bình của tam giác ABC
==> K là trung điểm của AC
==> AK = KC
b/
E là trung điểm AD
F là trung điểm BC
==> EF là đường trung bình của hình thang ABCD
==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)
KF là đường trung bình của tam giác ABC nên
KF = AB / 2 = 4 / 2 = 2(cm)
==> EK = EF - KF = 7 - 2 = 5(cm)
vậy EK = 5(cm), KF = 2 (cm)
3/
a/ ta có
D là trung điểm của AB
M là trung điểm của BC
==> DM là đường trung bình của tam giác ABC
==> Dm // AC
==> DM // AE ( E thuộc AC, DM // AC)
chứng minh tương tự ta có
ME là đường trung bình của tam giác ABC
==> AD // ME
tứ giác ADME có DM // AE, AD // ME nên là HBH
b/ ( nếu tam giác ABC cân tại A)
tam giác ABC cân tại A ==> AB = AC
AD = 1/2 AB (D là trung điểm của AB)
AE = 1/2 AC (E là trung điểm của AC)
==> AD = AE
c/ (nếu tam giác ABC vuông)
ta có
tứ giác ADME là HBH
góc A = 90 độ
==> tứ giác ADME là HCN
d/ ta có
AB^2 + AC^2 = BC^2
6^2 + 8^2 = 100
==> BC = 10(cm)
AM là đường trung tuyến của tam giác ABC
==> AM = 1/2 BC = 1/2 . 10 = 5(cm)
vậy AM = 5cm
Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé
Bài 3:
Bài 4:
Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)
Bài 5:
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
a) Xét tứ giác ABCE có AB song song và bằng EC (gt) nên nó là hình bình hành.
b) Xét tứ giác ABED có AB song song và bằng DE (gt) nên nó là hình bình hành.
Lại có \(\widehat{ADE}=90^o\) nên ABED là hình chữ nhật.
Lại có AB = AD nên ABED là hình vuông.
c) Xét tam giác AME và DMB có :
ME = B
AE = DB (Hai đường chéo hình vuông)
\(\widehat{AEM}=\widehat{DBM}=45^o\) (ABED là hình vuông)
\(\Rightarrow\Delta AEM=\Delta DBM\left(c-g-c\right)\Rightarrow\widehat{MAE}=\widehat{MDB}\) (1)
Xét hai tam giác vuông AHI và DOI có:
\(\widehat{AIH}=\widehat{DIO}\) (Hai góc đối đỉnh)
\(\Rightarrow\widehat{HAI}=\widehat{IDO}\) (Cùng phụ với hai góc bên trên) (2)
Từ (1) và (2) ta có: \(\widehat{ODK}=\widehat{IDO}\) hay DO là tia phân giác của góc \(\widehat{IDK}\)
d) Xét tam giác IDK có DO là tia phân giác đồng thời là đường cao nên nó là tam giác cân tại D.Vậy thì DO là đường trung tuyến hay OI = OK.
Do ABED là hình vuông nên O là trung điểm BD.
Xét tứ giác DIBK có O là trung điểm hai đường chéo nên DIBK là hình bình hành.
Lại có \(IK\perp DB\) nên DIBK là hình thoi.
Sửa đề: M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA
a: AB//DC
\(P\in DC\)
Do đó: AB//DP
AB=DC/2
DP=DC/2=PC
Do đó: AB=DP=CP
Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình của ΔBAC
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q,P lần lượt là trung điểm của DA,DC
=>QP là đường trung bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
Do đó: MNPQ là hình bình hành
c: ABPD là hình bình hành
=>AP cắt BD tại trung điểm của mỗi đường
=>E là trung điểm của AP và BD
Xét ΔADP có
Q,E lần lượt là trung điểm của AD,AP
=>QE là đường trung bình
=>QE//DP
=>QE//DC
Xét ΔBDC có
E,N lần lượt là trung điểm của BD,BC
=>EN là đường trung bình
=>EN//DC
EN//DC
QE//DC
mà QE và EN có điểm chung là E
nên Q,E,N thẳng hàng