Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ chứng minh \(\Delta ABD=\Delta BAC\) (c.g.c)
\(\Rightarrow\widehat{DBA}=\widehat{CAB}\Rightarrow\Delta OAB\text{ cân tại O}\Rightarrow OA=OB\) (1)
Mặt khác cũng do \(\Delta ABD=\Delta BAC\) suy ra BD = AC hay OB + OD = OA + OC
Do (1) suy ra OD = OC (2)
Nhân theo từng vế hai đẳng thức (1) và (2) ta được đpcm: OA . OD = OB . OC
P/s: Thực ra ban đầu em chẳng có ý tưởng thế này đâu. Nhưng vừa làm xong bài Câu hỏi của Nguyễn Thị Phương Uyên nên mới nghĩ ra hướng chứng minh tương tự thế này đấy ạ:)
Đề bài ko đủ dữ kiện để chứng minh nha, mk nghĩ phải chỉnh thành hình thang cân.
a: Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: ˆACD=ˆBDCACD^=BDC^
hay ˆODC=ˆOCDODC^=OCD^
Xét ΔOCD có ˆODC=ˆOCDODC^=OCD^
nên ΔOCD cân tại O
Suy ra: OC=OD
Ta có: AO+OC=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
Cho hình thang ABCD có AB//CD, hai đường chéo AC và BD cắt nhau tại O. Chứng ninh rằng OA×OD = OB×OC
* Ta có: OA = OB nên tam giác OAB cân tại O
* Do OC = OD nên tam giác OCD cân tại O
* vì OA = OB và OC = OD nên OA + OC = OB + OD
Hay AC = BD
Hình thang ABCD có hai đường chéo AC = BD nên đây là hình thang cân.
Suy ra: BC = AD và B A D ^ = A B C ^ ; A D C ^ = D C B ^
Chọn đáp án D
Câu hỏi của Nguyễn Thị Phương Uyên - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link trên.
Gọi J là trung điểm CD. Vận dụng t/c của đường tb, ta có : IJ // AD nên IJ vuông góc OK, JK // BC nên OI vuông góc JK. Trong tam giác IJK O là trực tâm => OJ vuông góc KI. Mặt khác, IK // CD (bạn đọc tự cm) nên OJ vuông góc DC. Như vậy, OJ vừa là đường cao vừa là trung tuyến của tam giác OCD nên tam OCD cân tại O hay OC = OD.
Ta có : AOB + OAB + ABO = 180 độ
DOC + ODC + OCD = 180 độ
Mà AOB = DOC ( 2 góc đối đỉnh)
=> OAB + ABO = ODC + OCD
Mà BAO = OCD ( so le trong)
ABO =ODC ( so le trong)
=> BAO = ABO
=> Tam giác AOB cân tại O
=> OA = OB(dpcm)
=> ODC = OCD
=> Tam giác DOC cân tại O
=> OC = OD(dpcm)