Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ABCD là hình thang
=> BAD + ADC = 180° ( trong cùng phía )
=> BAD = 180° - 60° = 120°
Vì DB là phân giác ADC
=> ADB = CDB = \(\frac{120°}{2}=60°\)
Vì AB//CD ( ABCD là hình thang )
=> ABD = BDC = 60° ( so le trong )
Mà ABD + DBC = 120°
=> DBC = 120° - 60° = 60°
b) Vì ABCD là hình thang cân
=> BAD = ABC = 120°
ADC = BCD = 60°
=> ADB = ABD = 60°
=> ∆ADB cân tại A
=> AD = AB = x
( Tự vẽ hình )
a) Xét \(\Delta ABE\)và \(\Delta KCE\)có :
\(\widehat{CEK}=\widehat{BEA}\)( đối đỉnh )
\(CE=EB\left(gt\right)\)
\(\widehat{KCB}=\widehat{CBA}\left(DK//AB\right)\)
\(\Rightarrow\Delta ABE=\Delta KCE\left(g-c-g\right)\left(đpcm\right)\)
b) \(\Rightarrow AE=EK\)
Xét \(\Delta ADK\)có AE = EK \(\Rightarrow DE\)là trung tuyến \(\Delta ADK\)
Mà DE là đường phân giác \(\Delta ADK\)
\(\Rightarrow\Delta ADK\)cân tại D ( đpcm )
c) \(\Rightarrow\)DE là đường cao \(\Delta ADK\)
\(\Rightarrow\widehat{AED}=90^o\left(đpcm\right)\)
a ) Kẻ BE vuông góc với BD
Xét tứ giác ABED có \(\widehat{DAB}=\widehat{ADE}=\widehat{DEB}=90^o\)
\(\Rightarrow\) ABED là hình vuông
\(\Rightarrow AB=DE\left(1\right)\)
Ta có : CD = DE + EC = 2AB ( 2 )
Từ ( 1 ) và ( 2) \(\Rightarrow DE=EC=AB\)
\(\Rightarrow\) BE là trung tuyến của tam giác BCD
Xét tam giác BCD có BE vừa là đường cao vừa là trung tuyến
\(\Rightarrow\) Tam giác BCD cân tại B
b ) Ta có tứ giác ABED là hình vuông ( chứng minh trên )
\(\Rightarrow\) BD là tia phân giác của \(\widehat{ADE}\) ( tính chất đường chéo của hình vuông )
\(\Rightarrow\) đpcm
Chúc bạn học tốt !!!
Hình như đề sai
đề đúng mà bn