K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 8 2021

c.

K thuộc AD nên BC song song DK

Áp dụng định lý Talet: \(\dfrac{BN}{KN}=\dfrac{CN}{DN}=1\Rightarrow BN=KN\) hay N là trung điểm BK

\(\Rightarrow\) BCKD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Theo câu b, E, M, N thẳng hàng nên Q nằm trên MN (1)

Mà MN là đường trung bình của hình thang ABCD

\(\Rightarrow MN||AD\Rightarrow MN\perp AB\) (2)

Mà M là trung điểm AB (3)

(2);(3) \(\Rightarrow\) MN là trung trực AB (4)

(1);(4) \(\Rightarrow QB=QA\)

d.

Hạ CH vuông góc AD

Trong tam giác vuông CHK: \(cosKAC=\dfrac{AH}{AC}\Rightarrow AH=AC.cos\widehat{KAC}\)

Pitago: \(CH^2+AH^2=AC^2\)

Do đó: \(CK^2=CH^2+HK^2=CH^2+\left(AK-AH\right)^2=CH^2+AH^2+AK^2-2AK.AH\)

\(=AC^2+AK^2-2AK.AC.cos\widehat{KAC}\) (đpcm)

NV
10 tháng 8 2021

undefined

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0
GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f...
Đọc tiếp

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

 

0
AH
Akai Haruma
Giáo viên
13 tháng 10 2023

Lời giải:

a. Vì $ABCD$ là hình bình hành nên $AB=CD$

$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AF=CE(1)$

Mặt khác: $AB\parallel CD\Rightarrow AF\parallel CE(2)$

Từ $(1); (2)\Rightarrow AECF$ là hình bình hành.

b. 

B, E,F thẳng hàng??? Bạn xem lại đề.

29 tháng 10 2017

Gọi M là trung điểm BC => BM=CM 
Xét tam giác ABC có: 
BM=CM 
AE=EC (giả thiết vì E la trung điểm của AC) 
Nên: EM là đường trung bình trong tam giác ABC 
=>EM//AB và EM=AB/2 
Tương tự: Xét tam giác BCD có: 
FM là đường trung bình trong tam giác BCD 
=>FM//CD và FM=CD/2 
Lại có: 
FM//CD 
mà AB//CD (theo giả thiết ABCD la hthang) 
Nên: FM//AB 
Mà EM//AB 
Do đó, theo tiên đề Ơclit ta có: E,M,F thẳng hàng. 
Vậy,EF=FM-EM=(CD-AB)/2  

21 tháng 12

 

 

a. Sỉ cằn

b.sóc lọ

 

Cho đường tròn tâm O đường kính AB=2R. Cho C là điểm chính giữa của cung AB. Trên đoạn AB lấy điểm E sao cho BE=AC. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc BAC cắt EH tại đường tròn tại điểm thứ hai là D. Tia AC và BD cắt nhau tại M. Tia CK cắt AB tại I và cắt đường tròn tại điểm thứ hai là F.1) Tính so đo góc AMB2) Chứng minh EH song song với BC3) Chứng minh AFEK nội tiếp4) Chứng minh...
Đọc tiếp

Cho đường tròn tâm O đường kính AB=2R. Cho C là điểm chính giữa của cung AB. Trên đoạn AB lấy điểm E sao cho BE=AC. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc BAC cắt EH tại đường tròn tại điểm thứ hai là D. Tia AC và BD cắt nhau tại M. Tia CK cắt AB tại I và cắt đường tròn tại điểm thứ hai là F.

1) Tính so đo góc AMB

2) Chứng minh EH song song với BC

3) Chứng minh AFEK nội tiếp

4) Chứng minh I là trung điểm của AE

5)AD cắt CE tại I. Chứng minh CI đi qua trung điểm của HJ

6)Vẽ đường kính CP, CB cắt AD tại O', MO' cắt AB tại N. Chứng minh P,N,D thẳng hàng

7)AD cắt CO tại S, BS cắt AC tại Q. Chứng minh QC.QM=QS.QB

8)Chứng minh PNCE là hình thoi và góc NPE = 45o, CN là phân giác của OCP

9)CD cắt AB tại L. Chứng minh LN.LO=LP.LA và NB.AL=NA.BL

10)CN cắt AD tại V. Chứng minh VL,DN,CB đồng quy

0