Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì ABID và ABCK là hbh nên \(AB=DI;AB=CK\)
Do đó \(DI=CK\Rightarrow DI-KI=CK-KI\)
Vậy \(KD=CI\)
b, Áp dụng Talet: \(\dfrac{DE}{EB}=\dfrac{DK}{AB}=\dfrac{CI}{AB}=\dfrac{IF}{FB}\left(DK=CI\right)\)
Suy ra EF//CD (Talet đảo)
Áp dụng Talet: \(\dfrac{AB}{EF}=\dfrac{DI}{EF}=\dfrac{BD}{BE}=\dfrac{BE+ED}{BE}=1+\dfrac{ED}{BE}=1+\dfrac{DK}{AB}=1+\dfrac{CD-CK}{AB}=1+\dfrac{CD-AB}{AB}=\dfrac{CD}{AB}\)
Vậy \(AB^2=EF\cdot CD\)
Câu 1:
Kẻ BH⊥AC và DK⊥AC
Dễ thấy \(\Delta AHB\sim\Delta AEC;\Delta AKD\sim\Delta AFC\)
Do đó \(\dfrac{AB}{AC}=\dfrac{AH}{AE};\dfrac{AD}{AC}=\dfrac{AK}{AF}\Leftrightarrow AB\cdot AE=AC\cdot AH;AD\cdot AF=AC\cdot AK\)
\(\Leftrightarrow AB\cdot AE+AD\cdot AF=AC\left(AH+AK\right)=AC^2\left(A\right)\)
Câu 2:
ABCD là htc nên \(AD=BC=AB\)
Ta có \(AD=AB=BC=\dfrac{BD}{\tan C}=\dfrac{6}{\sqrt{3}}=2\sqrt{3}\left(cm\right)\)
\(AH=AD\cdot\sin D=AD\cdot\sin C=2\sqrt{3}\cdot\sin60^0=3\left(cm\right)\)
\(DH=AD\cdot\cos D=\sqrt{3}\left(cm\right)\)
Áp dụng Talet: \(\dfrac{AI}{IH}=\dfrac{DH}{AB}=\dfrac{\sqrt{3}}{2\sqrt{3}}=\dfrac{1}{2}\Leftrightarrow AI=2IH\)
Mà \(AI+IH=AH=3\Leftrightarrow3IH=3\Leftrightarrow IH=1\Leftrightarrow AI=2\left(cm\right)\left(A\right)\)
Kẻ đường kính BB’. Nối B’A, B’D, B’C.
Ta có: = 90° ( góc nội tiếp chắn nửa đường tròn)
⇒ AC // B'D ( cùng vuông góc với BD)
Suy ra, tứ giác ADB’C là hình thang
Vì ADB’C nội tiếp đường tròn (O) nên ADB’C là hình thang cân
⇒ CD = AB'
⇒ A B 2 + C D 2 = A B 2 + A B ' 2
Mà tam giác BAB’ vuông tại A do = 90° ( góc nội tiếp chắn nửa đường tròn)
⇒ A B 2 + C D 2 = A B 2 + A B ' 2 = 2 R 2 = 4 R 2 (đpcm)
ta có \(AC=\sqrt{AD^2+DC^2}>\sqrt{AD^2+BA^2}=DB\) vậy AC>BD
. từ trên ta có :
\(\hept{\begin{cases}AC^2=AD^2+DC^2\\BD^2=AD^2+BA^2\end{cases}\Rightarrow AC^2-BD^2=CD^2-AB^2}\)