Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AM+BM+DM=0
<=> AM+(BC+CM)+(DA+AM)=0
<=>2AM+(BC+DA)+CM=0
<=>2(1/3AC)-MC=0
<=>2/3AC - 2/3 AC=0
<=>0=0 (ĐPCM)
cho a,b,c là 3 điểm không thẳng hàng . gọi I là trung điểm BC . CMR vecto AB + vecto AC = 2 vecto AI
\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BI}+\overrightarrow{IA}+\overrightarrow{CI}+\overrightarrow{IA}=2\cdot\overrightarrow{IA}\)
Bài 1:
Gọi M là trung điểm của AD
\(BM=\sqrt{AB^2+AM^2}=\sqrt{4a^2+\dfrac{1}{4}a^2}=\dfrac{\sqrt{17}}{2}a\)
\(\left|\overrightarrow{AB}+\overrightarrow{DB}\right|=2\cdot BM=\sqrt{17}a\)
Gọi O là tâm của hình bình hành ABCD :
Vì M là trung điểm của AB và \(AC\cap BD=I\) => I là trọng tâm tg ABC : => \(\overrightarrow{IA}+\overrightarrow{ID}+\overrightarrow{IB}=0\)
: \(\overrightarrow{AI}=\frac{2}{3}\overrightarrow{AO}=\frac{2}{3}+\frac{1}{2}\overrightarrow{AC}=\frac{1}{3}\overrightarrow{AC}\)=> loại A,C,D
=> Chọn B
Đổi "hình thang" thành "hình bình hành"