Cho hình thang ABCD. Lấy M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2023

a: Xét ΔBAC có

M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình của ΔABC

=>MN//AC và MN=AC/2

b: Xét ΔCDA có

P,Q lần lượt là trung điểm của CD,DA

=>PQ là đường trung bình của ΔCDA

=>PQ//AC và \(PQ=\dfrac{AC}{2}\)

MN//AC

PQ//AC

Do đó: MN//PQ

\(MN=\dfrac{AC}{2}\)

\(PQ=\dfrac{AC}{2}\)

Do đó: MN=PQ

Xét tứ giác MNPQ có

MN=PQ

MN//PQ

Do đó: MNPQ là hình bình hành

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

Ta có: \(\frac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)

\(=\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)

\(=\frac{29x^2+29}{x^2+1}=\frac{29\left(x^2+1\right)}{x^2+1}=29\)

=>Biểu thức này không phụ thuộc vào biến

4 tháng 3 2015

* Hướng dẫn câu b:

Gọi I là giao điểm của Gx và PQ. Kéo dài PQ cắt hai cạnh AD và BC theo thứ tự là E và F.

Góc MPQ = góc GEF (so le trong do MP // AD)

Góc MQP = góc GFE (so le trong do MQ // BC)

góc MPQ = góc MQP (tam giác MPQ cân do MP = MQ)

=> góc GEF = góc GEF -> tam giác GEF cân tại G

mà GI là phân giác của góc G -> GI vuông góc với EF

-> Gx vuông góc với PQ -> Gx // MN (MN vuông góc với PQ do hình thoi có 2 đường chéo vuông góc).

5 tháng 11 2017

Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …

Ví dụ :

B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}

Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.

26 tháng 12 2015

a) Hình thang cân ABCD, có:

AB // CD; AD = BC

Xét hình tam giác ACB, có:

I là trung điểm BC (gt)

Q là trung điểm AC (gt)

=> IQ là đường trung bình tam giác ACB

=> IQ // AB

mà AB // CD (cmt)

=> IQ // CD

Xét tam giác ACD, có:

Q là trung điểm AC 9gt)

P là trung điểm CD (gt)

=> QP là đường trung bình tam giác ACD

=> QP = 1/2 AD

mà AD = BC (I là trung điểm BC)

=> IB = IC = QP

Xét tứ giác QIPC, có:

QI // PC (cmt)

=> tứ giác QIPC là hình thang

có: QP = IC (cmt)

=> tứ giác QIPC là hình thang cân (đpcm)

b) Xét tam giác ABC, có:

QI là đường trung bình tam giác ABC (cmt)

=> tam giác CQI = 1/2 tam giác ABC

=> SQIC = 1/2 SABC

Cmtt: SCPQ = 1/2 SACD

mà mình thấy kì kì cái câu này theo mình là = 1/2 chứ sao = 1/4 (theo mình thôi nha)

c) Xét tam giác ABC, có:

M là trung điểm AB (gt)

Q là trung điểm AC (gt)

=> MQ là đường trung bình

=> MQ // BC

MQ = 1/2 BC

cmtt: MN // AD; MN = 1/2 AD

NP = 1/2; NP // BC

PQ // AD; QP = 1/2 AD

Xét tú giác MNPQ, có:

MQ // NP (cùng // BC)

MN // QP (cùng //AD)

=> MNPQ là hình bình hành

có: MQ = NP = 1/2 BC

=> MNPQ là hình thoi (đpcm)

p/s: có chỗ nào không hiểu thì inb hỏi nha ~

4 tháng 9

tuỳ ctv thôi

4 tháng 9

Dạng biểu thức bạn đưa ra là:

\(5^{2 n - 1} \cdot 2^{n} + 3^{n + 1} \cdot 2^{2 n - 1}\)

Và bạn cần xác định điều kiện để biểu thức này chia hết cho 38 với \(n \geq 2\).

Để giải quyết bài toán này, chúng ta có thể phân tích biểu thức và xem xét tính chất của phép chia với 38.

Bước 1: Phân tích chia hết cho 38

Ta biết rằng:

\(38 = 2 \cdot 19\)

Vì vậy, biểu thức cần phải chia hết cho cả 2 và 19.

Bước 2: Xét chia hết cho 2

Xét biểu thức mô tả phép chia cho 2:

\(5^{2 n - 1} \cdot 2^{n} + 3^{n + 1} \cdot 2^{2 n - 1}\)
  • \(5^{2 n - 1} \cdot 2^{n}\) luôn chia hết cho \(2^{n}\), mà \(n \geq 2\), do đó phần này luôn chia hết cho 2 khi \(n \geq 2\).
  • \(3^{n + 1} \cdot 2^{2 n - 1}\) cũng chia hết cho \(2^{2 n - 1}\), mà \(2 n - 1 \geq 3\) khi \(n \geq 2\), do đó phần này cũng chia hết cho 2.

Từ đó, ta có thể kết luận rằng biểu thức sẽ chia hết cho 2 với mọi \(n \geq 2\).

Bước 3: Xét chia hết cho 19

Bây giờ ta cần xem xét chia hết cho 19, tức là kiểm tra điều kiện:

\(5^{2 n - 1} \cdot 2^{n} + 3^{n + 1} \cdot 2^{2 n - 1} \equiv 0 \left(\right. m o d 19 \left.\right)\)

Ta sẽ xét các giá trị của \(n\) từ \(n = 2\) trở đi và kiểm tra xem biểu thức có chia hết cho 19 không.

Bước 4: Kiểm tra các giá trị \(n\)

Bây giờ, tôi sẽ thử tính một số giá trị của biểu thức cho \(n = 2 , 3 , 4\) để xem nó có chia hết cho 19 không.

Chờ một chút nhé, tôi sẽ tính toán thử.

It looks like to run Python code, you'd need to be logged in to ChatGPT. However, here's the code you can run on your own to check the divisibility for different values of \(n\):



def check_expression(n):
    # Calculate the expression for given n
    expr = (5**(2*n - 1) * 2**n + 3**(n + 1) * 2**(2*n - 1)) % 38
    return expr == 0

# Check for different values of n >= 2
results = {n: check_expression(n) for n in range(2, 10)}
print(results)

You can run it in any Python environment (like Jupyter, or an online compiler) to check for which values of \(n\), the expression is divisible by 38. Let me know if you need more help with this! 

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

12 tháng 8

x=2,y=−1,z=−1/3, và t=−2. là kết quả nhé bn