K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

P là trung điểm của AC

Do đó: MP là đường trung bình của ΔBAC

Suy ra: MP//BC và \(MP=\dfrac{BC}{2}\left(1\right)\)

Xét ΔBDC có

Q là trung điểm của BD

N là trung điểm của CD

Do đó: QN là đường trung bình của ΔBDC

Suy ra: QN//BC và \(QN=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MP//QN và MP=QN

hay MQNP là hình bình hành

21 tháng 1 2019

a) Áp dụng tính chất đường trung bình của tam giác cho DABC và DDBC ta sẽ có:

MQ//PN//BC và MQ = PN = 0.5BC ÞMPNQ là hình bình hành.

b) Tương tự ta có QN//MP//AD và QN = MP = 0.5AD.

Nên để MPNQ là hình thoi thì MN ^ PQ khi đó MN ^ CD và trung trực hay trục đối xứng của AB và CD.

Þ hình thang ABCD là hình thang cân

4 tháng 3 2015

* Hướng dẫn câu b:

Gọi I là giao điểm của Gx và PQ. Kéo dài PQ cắt hai cạnh AD và BC theo thứ tự là E và F.

Góc MPQ = góc GEF (so le trong do MP // AD)

Góc MQP = góc GFE (so le trong do MQ // BC)

góc MPQ = góc MQP (tam giác MPQ cân do MP = MQ)

=> góc GEF = góc GEF -> tam giác GEF cân tại G

mà GI là phân giác của góc G -> GI vuông góc với EF

-> Gx vuông góc với PQ -> Gx // MN (MN vuông góc với PQ do hình thoi có 2 đường chéo vuông góc).

5 tháng 11 2017

Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …

Ví dụ :

B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}

Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.

24 tháng 4 2021

Lời giải :

Để \(MPNQ\) là hình chữ nhật thì \(MN=PQ\)

Ta có : \(AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BN\) , \(AM\) song song với BN \(\Rightarrow AMNB\) là hình bình hành \(\Rightarrow AB=MN\Rightarrow MN=CD\) 

Ta lại có : \(AP=PQ=QC\) ( cmt ) \(\Rightarrow PQ=\dfrac{1}{3}AC\)

\(\Rightarrow CD=MN=PQ=\dfrac{1}{3}AC\)

\(\dfrac{CA}{CD}=3\) thì MPNQ là hình chữ nhật

25 tháng 12 2021

làm phần a hộ đko ạ

 

20 tháng 12 2016

Hình bạn tự vẽ nha

a) CMR Tứ giác ABEC là hình bình hành

Vì ABCD là hcn (gt) => AB=CD và AB//CD (t/c hcn)

=> AB=CE và AB//CE ( CE= DC, E \(\in\) CD)

=> tứ giác ABEC là hình bình hành(dhnb)

b) BOCF là hình gì

Vì ABEC là hbh (cmt) => AC=BE và AB//BE 9T/c hbh)

=> 1/2 AC=1/2BE và OC//BF (1)

<=> OC= BF(2)

Từ (1) và (2) => BOCF là hbh (dhnb)

mà OB=OC (t/c đừng chéo hcn)

=> BOCF là hình thoi (dhnb)

c) DOFE là hình thang cân

Vì AC= BE ( ABEC là hbh)

mà AC =BD ( T/c hcn)

=> BE= BD => Tam giác BED cân tại B (đ/n)

=> BDE= BED (t/c tam giác cân) (1)

Vì C là trung điểm DE ( D đx E qua C) => BC là đường trung tuyến của tam giác ABC cân => BC là đương cao ( t/c các đường trong tam giác cân) => BC _l_ DE

mà BC_l_ OF (đg chéo hình thoi)

=> DE//OF ( từ _l_ -> //) (2)

Từ (1) và (2)=> OFDE là hình thang cân (dhnb hthang cân)

 

20 tháng 12 2016

mọi người giúp mình nhé mai mình thi rồi

6 tháng 1 2019

987456321gianroi

a: Xét tứ giác AMND có 

AM//ND

AM=ND

Do đó: AMND là hình bình hành

b: Hình bình hành AMND có AM=AD

nên AMND là hình thoi

c: Xét tứ giác ANKQ có 

D là trung điểm của NQ

D là trung điểm của AK

Do đó: ANKQ là hình bình hành