K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABD có 

E là trung điểm của AD

I là trung điểm của AB

Do đó: EI là đường trung bình của ΔABD

Suy ra: EI//BD và \(EI=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBDC có

H là trung điểm của BC

K là trung điểm của CD

Do đó: HK là đường trung bình của ΔBDC

Suy ra: HK//BD và \(HK=\dfrac{BD}{2}\left(2\right)\)

Xét ΔABC có 

I là trung điểm của AB

H là trung điểm của BC

Do đó: IH là đường trung bình của ΔBAC

Suy ra: \(IH=\dfrac{AC}{2}\)

mà AC=BD

nên \(IH=\dfrac{BD}{2}\)

hay IH=HK

Xét tứ giác IEKH có 

EI//KH

EI=KH

Do đó: IEKH là hình bình hành

mà IH=HK

nên IEKH là hình thoi

Xét ΔABD có 

E là trung điểm của AD

I là trung điểm của AB

Do đó: EI là đường trung bình của ΔABD

Suy ra: EI//BD và \(EI=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBDC có

H là trung điểm của BC

K là trung điểm của CD

Do đó: HK là đường trung bình của ΔBDC

Suy ra: HK//BD và \(HK=\dfrac{BD}{2}\left(2\right)\)

Xét ΔABC có 

I là trung điểm của AB

H là trung điểm của BC

Do đó: IH là đường trung bình của ΔBAC

Suy ra: \(IH=\dfrac{AC}{2}\)

mà AC=BD

nên \(IH=\dfrac{BD}{2}\)

hay IH=HK

Xét tứ giác IEKH có 

EI//KH

EI=KH

Do đó: IEKH là hình bình hành

mà IH=HK

nên IEKH là hình thoi

27 tháng 10 2021

Xét ΔABC có 

E là trung điểm của AB

N là trung điểm của AC

Do đó: EN là đường trung bình của ΔABC

Suy ra: EN//BC và \(EN=\dfrac{BC}{2}\left(1\right)\)

Xét ΔBDC có

M là trung điểm của BD

F là trung điểm của CD

Do đó: MF là đường trung bình của ΔBDC

Suy ra: MF//BC và \(MF=\dfrac{BC}{2}\left(2\right)\)

Xét ΔABD có 

E là trung điểm của AB

M là trung điểm của BD

Do đó: EM là đường trung bình của ΔABD

Suy ra: \(EM=\dfrac{AD}{2}=\dfrac{BC}{2}\left(3\right)\)

Từ (1) và (2) suy ra EN//MF và EN=MF

Từ (1) và (3) suy ra EN=EM

Xét tứ giác ENFM có

EN//MF

EN=MF

Do đó: ENFM là hình bình hành

mà EN=EM

nên ENFM là hình thoi

6 tháng 10 2018

Sử dụng đường trung bình, ta có: KN = 1/2 AB, NI = 1/2 CD , IM = 1/2 AB , MK = 1/2 CD

Mà AB = CD (gt)

\(\Rightarrow KN=NI=IM=MK\)

\(\Rightarrow KNIM\)là hình thoi

Do đó: MN là tia phân giác của \(\widehat{IMK}\)(tính chất hình thoi)

Chúc bạn học tốt.

1 tháng 3 2020

Xin phép ad cho em tách ạ,nguyên 1 câu khá  là dài,hihi

1 tháng 3 2020

Nãy bận xíu :D

26 tháng 12 2015

a) Hình thang cân ABCD, có:

AB // CD; AD = BC

Xét hình tam giác ACB, có:

I là trung điểm BC (gt)

Q là trung điểm AC (gt)

=> IQ là đường trung bình tam giác ACB

=> IQ // AB

mà AB // CD (cmt)

=> IQ // CD

Xét tam giác ACD, có:

Q là trung điểm AC 9gt)

P là trung điểm CD (gt)

=> QP là đường trung bình tam giác ACD

=> QP = 1/2 AD

mà AD = BC (I là trung điểm BC)

=> IB = IC = QP

Xét tứ giác QIPC, có:

QI // PC (cmt)

=> tứ giác QIPC là hình thang

có: QP = IC (cmt)

=> tứ giác QIPC là hình thang cân (đpcm)

b) Xét tam giác ABC, có:

QI là đường trung bình tam giác ABC (cmt)

=> tam giác CQI = 1/2 tam giác ABC

=> SQIC = 1/2 SABC

Cmtt: SCPQ = 1/2 SACD

mà mình thấy kì kì cái câu này theo mình là = 1/2 chứ sao = 1/4 (theo mình thôi nha)

c) Xét tam giác ABC, có:

M là trung điểm AB (gt)

Q là trung điểm AC (gt)

=> MQ là đường trung bình

=> MQ // BC

MQ = 1/2 BC

cmtt: MN // AD; MN = 1/2 AD

NP = 1/2; NP // BC

PQ // AD; QP = 1/2 AD

Xét tú giác MNPQ, có:

MQ // NP (cùng // BC)

MN // QP (cùng //AD)

=> MNPQ là hình bình hành

có: MQ = NP = 1/2 BC

=> MNPQ là hình thoi (đpcm)

p/s: có chỗ nào không hiểu thì inb hỏi nha ~

2 tháng 11 2015

bài này khá dễ , áp dụng đường trung bình trong tam giác , sau đó áp dụng giả thiết AC = BD