Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD có
E là trung điểm của AD
I là trung điểm của AB
Do đó: EI là đường trung bình của ΔABD
Suy ra: EI//BD và \(EI=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBDC có
H là trung điểm của BC
K là trung điểm của CD
Do đó: HK là đường trung bình của ΔBDC
Suy ra: HK//BD và \(HK=\dfrac{BD}{2}\left(2\right)\)
Xét ΔABC có
I là trung điểm của AB
H là trung điểm của BC
Do đó: IH là đường trung bình của ΔBAC
Suy ra: \(IH=\dfrac{AC}{2}\)
mà AC=BD
nên \(IH=\dfrac{BD}{2}\)
hay IH=HK
Xét tứ giác IEKH có
EI//KH
EI=KH
Do đó: IEKH là hình bình hành
mà IH=HK
nên IEKH là hình thoi
Xét ΔABC có
E là trung điểm của AB
N là trung điểm của AC
Do đó: EN là đường trung bình của ΔABC
Suy ra: EN//BC và \(EN=\dfrac{BC}{2}\left(1\right)\)
Xét ΔBDC có
M là trung điểm của BD
F là trung điểm của CD
Do đó: MF là đường trung bình của ΔBDC
Suy ra: MF//BC và \(MF=\dfrac{BC}{2}\left(2\right)\)
Xét ΔABD có
E là trung điểm của AB
M là trung điểm của BD
Do đó: EM là đường trung bình của ΔABD
Suy ra: \(EM=\dfrac{AD}{2}=\dfrac{BC}{2}\left(3\right)\)
Từ (1) và (2) suy ra EN//MF và EN=MF
Từ (1) và (3) suy ra EN=EM
Xét tứ giác ENFM có
EN//MF
EN=MF
Do đó: ENFM là hình bình hành
mà EN=EM
nên ENFM là hình thoi
Sử dụng đường trung bình, ta có: KN = 1/2 AB, NI = 1/2 CD , IM = 1/2 AB , MK = 1/2 CD
Mà AB = CD (gt)
\(\Rightarrow KN=NI=IM=MK\)
\(\Rightarrow KNIM\)là hình thoi
Do đó: MN là tia phân giác của \(\widehat{IMK}\)(tính chất hình thoi)
Chúc bạn học tốt.
Xin phép ad cho em tách ạ,nguyên 1 câu khá là dài,hihi
a) Hình thang cân ABCD, có:
AB // CD; AD = BC
Xét hình tam giác ACB, có:
I là trung điểm BC (gt)
Q là trung điểm AC (gt)
=> IQ là đường trung bình tam giác ACB
=> IQ // AB
mà AB // CD (cmt)
=> IQ // CD
Xét tam giác ACD, có:
Q là trung điểm AC 9gt)
P là trung điểm CD (gt)
=> QP là đường trung bình tam giác ACD
=> QP = 1/2 AD
mà AD = BC (I là trung điểm BC)
=> IB = IC = QP
Xét tứ giác QIPC, có:
QI // PC (cmt)
=> tứ giác QIPC là hình thang
có: QP = IC (cmt)
=> tứ giác QIPC là hình thang cân (đpcm)
b) Xét tam giác ABC, có:
QI là đường trung bình tam giác ABC (cmt)
=> tam giác CQI = 1/2 tam giác ABC
=> SQIC = 1/2 SABC
Cmtt: SCPQ = 1/2 SACD
mà mình thấy kì kì cái câu này theo mình là = 1/2 chứ sao = 1/4 (theo mình thôi nha)
c) Xét tam giác ABC, có:
M là trung điểm AB (gt)
Q là trung điểm AC (gt)
=> MQ là đường trung bình
=> MQ // BC
MQ = 1/2 BC
cmtt: MN // AD; MN = 1/2 AD
NP = 1/2; NP // BC
PQ // AD; QP = 1/2 AD
Xét tú giác MNPQ, có:
MQ // NP (cùng // BC)
MN // QP (cùng //AD)
=> MNPQ là hình bình hành
có: MQ = NP = 1/2 BC
=> MNPQ là hình thoi (đpcm)
p/s: có chỗ nào không hiểu thì inb hỏi nha ~
Xét ΔABD có
E là trung điểm của AD
I là trung điểm của AB
Do đó: EI là đường trung bình của ΔABD
Suy ra: EI//BD và \(EI=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBDC có
H là trung điểm của BC
K là trung điểm của CD
Do đó: HK là đường trung bình của ΔBDC
Suy ra: HK//BD và \(HK=\dfrac{BD}{2}\left(2\right)\)
Xét ΔABC có
I là trung điểm của AB
H là trung điểm của BC
Do đó: IH là đường trung bình của ΔBAC
Suy ra: \(IH=\dfrac{AC}{2}\)
mà AC=BD
nên \(IH=\dfrac{BD}{2}\)
hay IH=HK
Xét tứ giác IEKH có
EI//KH
EI=KH
Do đó: IEKH là hình bình hành
mà IH=HK
nên IEKH là hình thoi