Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

kéo dài CI cắt AD tại E.
Chứng minh được CI = IE nên tam giác CDE cân tại D.
Suy ra DI là phân giác góc D, khi đó IH = IA. Vậy DC là tiếp tuyến của đường tròn đường kính AB.

a: Xét tứ giác CAOH có \(\hat{CAO}+\hat{CHO}=90^0+90^0=180^0\)
nên CAOH là tứ giác nội tiếp
=>C,A,O,H cùng thuộc một đường tròn
b: Gọi K là giao điểm của OC và DB
Xét ΔOAC vuông tại A và ΔOBK vuông tại B có
OA=OB
\(\hat{AOC}=\hat{BOK}\) (hai góc đối đỉnh)
Do đó: ΔOAC=ΔOBK
=>OC=OK và AC=BK
Xét ΔDOC vuông tại O và ΔDOK vuông tại O có
DO chung
OC=OK
Do đó: ΔDOC=ΔDOK
=>\(\hat{ODC}=\hat{ODK}\) và DC=DK
Xét ΔDHO vuông tại H và ΔDBO vuông tại B có
DO chung
\(\hat{HDO}=\hat{BDO}\)
Do đó: ΔDHO=ΔDBO
=>DH=DB và OH=OB
OH=OB
=>OH=R
=>H nằm trên (O;R)
=>CD là tiếp tuyến tại H của (O)
c: Xét (O) có
CA,CH là các tiếp tuyến
Do đó: CA=CH
Xét ΔOCD vuông tại O có OH là đường cao
nên \(HC\cdot HD=OH^2\)
=>\(AC\cdot BD=R^2\)

hình ông tự vẽ nha
kẻ OH vuông góc với CD
Kẻ OK là trung tuyến của tam giác CMD
xét tam giác CMD vuông tại M có
MK=CK = 1/2 CD (MK là tiếp tuyến )
=> CKM là tam giác cân, cân tại K
=> góc MKC = góc KMC
AC vuông góc với AB
BD vuông góc với AB
=> AC // BD
=>ACBD là hình thang
AM = MB
CK=KD
=>MK là đường trung bình
=> MK // CA
=> góc ACM = góc KMC
mà góc KMC = góc KCM (cmt)
=> góc ACM = góc KCM
=> góc HMC= góc CMA (cùng phụ 2 góc đó)
xét tam giác MAC và tam giác MHC có:
góc CAM = góc CHM = 90 độ
góc ACM= góc HCM ( cmt)
=> góc HMC= góc CMA
=> tam giác MAC = tam giác MHC
=> HM = AM mà HM vuông CD => ĐPCM
bài có ít sai sót ông xem thử nha

Hãy xác định hàm số y=ax+b, biết: đồ thị hàm số song song với đường thẳng y=2x và cắt trục hoành tại điểm có hoành độ bằng -3

a) Kẻ BH vg với CD.
ABHD là HCN nên AD = BH .
Theo định lí py - ta - go:
\(AD=BH=\sqrt{BC^2-CH^2}=\sqrt{13^2-\left(9-4\right)^2}=12\)
b) O ở đâu vậy