\(\perp\)CD và AD = CD. Đường cao BH. Trên tia đối ti...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

bài này ko khó nếu nắm rõ công thức

A)Ta có AD=DC ( giả thiết )

mà AD=BH ( cùng là chiều cao của hình thang)

=>BH=DC

=>Tam giác Dkc=Tam giác HCB (cạnh huyền cạnh góc vuông)

=>góc DKC=góc HCB (hai góc tương ứng )

mà Góc DKC+ góc DCK = 90 độ

=>góc HCB+ góc DCk=90

=>góc BCK=90 độ=> BC vuông góc với Ck

B )Tam giác ECK vuông tại C ( do câu a)

=>1/CD^2=1/EC^2+1/Ck^2

Tam giác Dkc=Tam giác HCB (cạnh huyền cạnh góc vuông)

=> CK=CB

=>

1/CD^2=1/EC^2+1/CB^2

18 tháng 8 2018

Xét tam giác AKD và tam giác ABE ta có:

\(\widehat{ADK}=\widehat{ABE}\left(=90^o\right)\)

\(\widehat{KAD}=\widehat{BAE}\) (cùng phụ \(\widehat{DAF}\)

=> \(\Delta AKD\sim\Delta AEB\left(g-g\right)\)

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AK}{AE}=\dfrac{1}{2}\)

\(\Rightarrow AK=\dfrac{1}{2}AE\)

Xét tam giác AKF vuông tại A có đcao AD :

\(\dfrac{1}{AD^2}=\dfrac{1}{AK^2}+\dfrac{1}{AF^2}\) (HTL)

\(\dfrac{1}{\dfrac{1}{4}AB^2}=\dfrac{1}{\dfrac{1}{4}AE^2}+\dfrac{1}{AF^2}\)

\(\dfrac{4}{AB^2}=\dfrac{4}{AE^2}+\dfrac{1}{AF^2}\)

\(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{4AF^2}\)

27 tháng 11 2021

a) Xét tam giác AHB và tam giác DHB có:
góc H = 90 độ
HB chung
AB=DB (gt)
=> tam gaics AHB = tam giác DHB ( cạnh huyền cạnh góc vuông)
=> AH = HD ( 2 cạnh tương ứng)
b) Chứng min htuowng tự có có:
tam giác AKC = tam giác EKC ( cạnh huyền - cạnh góc vuông)
=> AK = KE ( 2 cạnh tương ứng)
*) Xét tám giác ADE có:
AH = HD ( cmt)
AK = KE ( cmt)
=> HK alf đường trung bình của hình thang
=> HK//DE hay nói cách khác
HK // DB

27 tháng 11 2021

TL :

Đây nhé

Xin lỗi phải chờ lâu

#####

Uchi ha

sáuke

nighy

undefined

undefined

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

Lời giải:

a)

Áp dụng định lý Pitago: \(AD^2=AO^2+OD^2=a^2+(\frac{a}{2})^2=\frac{5}{4}a^2\)

\(\Rightarrow AD=\frac{\sqrt{5}a}{2}\)

\(\cos A=\frac{AO}{AD}=\frac{a}{\frac{\sqrt{5}}{2}a}=\frac{2}{\sqrt{5}}\)

\(\cos A=\frac{AC}{AB}\Rightarrow AC=\cos A. AB=\frac{2}{\sqrt{5}}.2a=\frac{4}{\sqrt{5}}a\)

\(BC^2=AB^2-AC^2=(2a)^2-(\frac{4}{\sqrt{5}}a)^2=\frac{4}{5}a^2\Rightarrow BC=\frac{2}{\sqrt{5}}a\)

b)

Xét tam giác vuông tại $C$ là $CAB$ có đường trung tuyến $CO$ ứng với cạnh huyền nên \(CM=AO=OB=\frac{AB}{2}=a\)

Do đó: \(OC=OA=OB=OE=a\) nên 4 điểm $C,A,B,E$ cùng nằm trên đường tròn tâm $O$

22 tháng 7 2019

sao không có hình :<