Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình ảnh minh họa , tại e k biết vẽ nhưng A và D = 90 độ và MC=CD , MB=AB . Hình dạng đúng rồi nhưng số đo góc và cạnh k đúng
Hình vẽ:
Từ giả thiết ta có \(\dfrac{MC}{MB}=\dfrac{CD}{AB}\left(1\right)\)
Mặt khác \(\left\{{}\begin{matrix}BA\perp AD\\CD\perp AD\end{matrix}\right.\Rightarrow BA//CD\)
\(\Rightarrow\dfrac{CD}{AB}=\dfrac{NC}{NA}\left(2\right)\) (Định lí Talet)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{MC}{MB}=\dfrac{NC}{NA}\)
\(\Rightarrow MN//AB\)
Mà \(AB\perp AD\Rightarrow MN\perp AD\)
a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)
\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)
\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)
b, \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)
Do đó: BI là tia p/g của \(\widehat{ABC}\)
Mà CI là tia phân giác của \(\widehat{BCD}\)
\(\widehat{ABC}+\widehat{BCD}=180^0\)
\(\Rightarrow\widehat{BIC}=90^0\)
c, \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)
\(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\) (2)
Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)