K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

________Tự vẽ hình nhé bn___________
Vì AC \( \perp\) BD = {O}

Xét \(\bigtriangleup{AOD}\) vuông tại O , áp dụng định lý Py-ta-go , có :

\(AD^2=AO^2+OD^2\) (1)

\(\bigtriangleup{AOB}\) vuông tại O , áp dụng định lý Py-ta-go , có:

\(OA^2=AB^2-OB^2\) (2)

\(\bigtriangleup{DOC}\) vuông tại O , áp dụng định lý Py-ta-go , có :

\(OD^2= CD^2-OC^2\) (3)

Từ (1), (2) và (3) có :

\(AD^2=AB^2-OB^2+CD^2-OC^2\)

\(= AB^2+CD^2-(OB^2+OC)^2\)

Áp dụng định lý Py-ta-go vào \(\bigtriangleup{BOC}\) vuông tại O có :\(OB^2+OC^2=BC^2\)

\(\Rightarrow\) \(AD^2=AB^2+CD^2-BC^2\) (4)

Từ B hạ BK \(\perp\) DC

Xét tứ giác ABKD có :

\(\widehat{BAD} = \widehat{ADK} = \widehat{DKB} = 90^0\)

\(\Rightarrow\) Tứ giác ABKD là hình chữ nhật

\(\Rightarrow\) \(AB=DK=9cm\)

\(\Rightarrow\) \(KC = DC - DK = 16 - 9 = 7cm \)

\(\Rightarrow\) AD = BK

Xét \(\bigtriangleup{BKC}\) vuông tại K có :

\(BC^2=BK ^2+KC^2\) (5)

Từ (4) và (5) có :

\(AD^2 = AB^2+CD^2\) \(- (BK^2+KC^2)\)

\(\Leftrightarrow\) \(AD^2=AB^2+CD^2-BK^2-KC^2 \) ( Vì BK = AD )
\(\Leftrightarrow\) \(AD^2=AB^2+CD^2-AD^2-KC^2\)

\(\Leftrightarrow\) \(2AD^2=AB^2+CD^2-KC^2\)

\(\Leftrightarrow\) \(2AD^2 =9^2+16^2+7^2\)

\(\Leftrightarrow\) \(2AD^2 = 81+256+49\)

\(\Leftrightarrow\) \(2AD^2 = 288\)

\(\Leftrightarrow\)\(AD^2 = 144\)

\(\Rightarrow\) AD = 12

\(S_{ABCD}\) = \(\dfrac{(AB+CD).AD}{2}\) = \(\dfrac{(9+16).12}{2}\) \(= 150 (cm^2)\)

17 tháng 8 2019

Xét tam giác ADB và tam giác ADC có:

\(\widehat{BAD}\)=\(\widehat{ADC}\left(=90^0\right)\)

\(\widehat{ABD}=\widehat{DAC}\)(cùng phụ \(\widehat{CAB}\))

nên \(\Delta ADB\sim\Delta DCA\left(g-g\right)\)

=> \(\frac{AD}{DC}=\frac{AB}{AD}\)

<=> AD2=DC.AB=16.9=144

=>AD=12(cm) (vì AD>0

DD
6 tháng 7 2021

Xét tam giác \(ABD\)vuông tại \(A\):

\(BD^2=AB^2+AD^2\)(định lí Pythagore) 

\(=4^2+10^2=116\)

\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)

Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)

Suy ra \(ABDE\)là hình bình hành. 

\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):

\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)

\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)

\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)

Hạ \(BH\perp CD\).

\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)

\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)