Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ A kẻ đường thẳng song song với BC cắt CD tại E
\(\Rightarrow\)tứ giác ABCE là hình bình hành \(\Rightarrow\)AB=CE=4cm;AE=BC=5cm\(\Rightarrow\)DE=CD-EC=4cm
xét \(\Delta\) ADE có:AD2+DE2=32+42=25
AE2=52=25\(\Rightarrow\)AD2+DE2=AE2
\(\Rightarrow\Delta\)ADE vuông tại D \(\Rightarrow AD\perp DE\) hay \(AD\perp DC\)
\(\Rightarrow\)tứ giác ABCD là hình thang vuông
bạn tự vẽ hình nhé :)
a) ABCE là hình thang có 2 cạnh bên song song => AC=BE mà AC=BD => BE=BD => tam giác BDE cân tại B
b) tam giác BDE cân tại B => góc BDC=góc E mà góc ACD=góc E (2 góc đồng vị, AC//BE) => góc BDC= góc ACD
từ đó, chứng minh đc tg ACD=BDC (c-g-c)
c) tg ACD=BDC => góc ADC=góc BCD (2 góc tương ứng) => đpcm
tg BDE cân tại B:
ta có:ACD=BAC(AB//CD)
mà ACD =BEC =>BEC=BAC
xét tg ABC va tg ECB
+BC chung
+ACB=EBC(so le trong)
+BEC=BAC(cm trên )
=>tam giac ABC =tam giac ECB
=>BDC=BEC
ma `BEC=ACD(đồng vị)
=>ACD=BDC
xét tg ACD va tg BDC,ta có :
+DC chung
+ACD=BDC
+AC=BD(gt)
=>tg ACD = tg BDC
=>ADC=BCD
=>ABCD la hình thang cân (đpcm)
Bạn tự kẻ hình nhé.
a)
Kẻ BK vuông góc với BD (K thuộc DC).
Vì AC vuông góc với BD , BD vuông góc với BK nên AC // BK.
Xét tứ giác ABKC có: AB// CK (vì AB//CD) ; AC//BK.
=> Tứ giác ABKC là hình bình hành. (1)
=> AB = CK.
=> CK = 5 (cm).
Ta có: DC + CK = DK
=> DK = 10 + 5 = 15 (cm)
Từ (1) => AC = BK => BK = 12(cm)
Xét tam giác BDK vuông tại B có:
BD2 + BK2 = DK2
BD2 + 122 = 152
BD2 + 144 = 225
BD2 = 81
=> BD = 9 (cm) (vì BC>0)
Vậy BD = 9cm
b)
Gọi O là giao của BD và AC
Ta có: SABCD = SABD + SBCD
SABCD = 1/2 x OA x BD + 1/2 x OC x BD
SABCD = 1/2 x BD x ( OA + OC)
SABCD = 1/2 x BD x AC
SABCD = 1/2 x 9 x 12 = 54 (cm2)
Vậy SABCD = 54 cm2.
Qua A kẻ AE//BD (E Î DC)
Þ AE = BD = 12cm, DE = AB = 5cm
Þ DAEC vuông tại A (định lý Pytago đảo)
⇒ A H = A E . A C E C = 12.16 20 = 9 , 6 c m
Þ SABCD = 96cm2