Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Kẻ \(NT\perp BC, CH\perp AD\) \(\Rightarrow NT\parallel CH\)
Hiển nhiên $ABCH$ là hình vuông\(\Rightarrow AH=AB=\frac{AD}{2}\Rightarrow HD=\frac{AD}{2}=HC\)
\(\Rightarrow \triangle HCD\) vuông cân tại $H$
\(\Rightarrow 45^0=\angle DCH=\angle TNC\), kéo theo tam giác \(NCT\) vuông cân tại $T$ \(\Rightarrow NT=CT\)
Xét thấy:
\(\left\{\begin{matrix} \angle BAM=\angle TMN(=90^0-\angle AMB)\\ \angle ABM=\angle MTN=90^0\end{matrix}\right.\Rightarrow \triangle ABM\sim \triangle MTN\)
\(\Rightarrow \frac{AB}{BM}=\frac{MT}{TN}\Leftrightarrow \frac{BC}{BM}=\frac{MT}{CT}\)
\(\Leftrightarrow BC.CT=MT.BM\Leftrightarrow (BM+MC)(MT-MC)=MT.BM\)
\(\Leftrightarrow MC.MT-BM.MC-MC^2=0\)
\(\Leftrightarrow MT-BM-MC=0\Leftrightarrow CT=BM\)
Khi đó, vì \(\triangle ABM\sim \triangle MTN\Rightarrow \frac{AM}{MN}=\frac{BM}{TN}=\frac{BM}{CT}=1\)
\(\Leftrightarrow AM=MN\) hay tam giác $AMN$ vuông cân .
a) Lấy I là trung điểm của AD. Theo đề bài ta có AI = ID = AB = BC.
Xét tứ giác AIBC có AI song song và bằng BC nên AIBC là hình bình hành. Lại có góc A vuông nên AIBC là hình chữ nhật. Mà AI = AB nên AIBC là hình vuông.
Từ đó ta có : IC vuông góc với AD và IC = AI = ID.
Xét tam giác ACD có trung tuyến CI đồng thời là đường cao nên nó là tam giác cân tại C. Lại có trung tuyến ứng với cạnh AD bằng một nửa cạnh đó nên tam giác ACD vuông tại C.
Vậy nên tam giác ACD là tam giác vuông cân tại C.
b) Gọi J là trung điểm AN. Gọi C' là điểm đối xứng với C qua J.
Xét tam giác vuông ACN có CJ là đường trung bình ứng với cạnh huyền nên AJ = JN = JC. Vậy thì \(\widehat{JCA}=\frac{1}{2}\widehat{C'JA}\)
Tương tự như vậy, xét tam giác vuông AMN, ta cũng có \(\widehat{JNM}=\frac{1}{2}\widehat{AJM}\)
Xét tam giác C'MC có MJ = JC = JC' (Cùng bằng một nửa AM). Vậy nên tam giác C'MN vuông tại M. Khi đó tương tự như bên trên ta có:
\(\widehat{JCM}=\frac{1}{2}\widehat{C'JM}\)
Từ đó ta có:
\(\widehat{JNM}=\frac{1}{2}\widehat{AJM}=\frac{1}{2}\left(\widehat{C'JM}-\widehat{C'JA}\right)=\frac{1}{2}\widehat{C'JM}-\frac{1}{2}\widehat{C'JA}=\widehat{JCM}-\widehat{JCA}=\widehat{ACM}\)
Do AIBC là hình vuông nên ta có ngay \(\widehat{ACM}=45^o\Rightarrow\widehat{ANM}=45^o\)
Tam giác vuông AMN có \(\widehat{AMN}=45^o\) nên AMN là tam giác vuông cân tại M.
cho a,b thuộc N.Chứng minh
a. (a+b).(a+b)=a.a+2.a.b+b.b
b. (a-b).(a-b)=a2-2ab+b2
c. (a+b).(a-b)=a2-b2
Tham khảo lời giải tại đây:
Câu hỏi của vũ thi tân - Toán lớp 8 | Học trực tuyến
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath