Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác MCD có đáy DC bằng chiều dài chữ nhật ABCD và có chiều cao tương ứng bằng chiều rộng hình chữ nhật ABCD
Nên S(MCD) = 1/2 S(ABCD) = 425,6 : 2 = 212,8 cm2
Mà S(AMD) + S(MBC) = S(ABCD) - S(MCD) = S(MCD)
Vậy tổng DT của tam giác AMD và MBC bằng 212,8 cm2
diện tích tam giác AMD là: AM X AD/2
diện tích tam giác MBC là: MB X BC/2
tổng diện tích tam giác MAD và MBC là:
AM X AD /2 + MB X BC /2
= AM X AD /2 + BM X AD /2 ( do AD=BC)
=AD X ( AM + MB ) /2
=AD X AB /2
= S abcd /2
=425,6/2
=212,8
nhớ k cho mình nhé ^.^
a/ Nửa chu vi HCN là 60:2=30 cm
\(\frac{AB}{BC}=\frac{3}{2}\) nên \(AB=\frac{30}{3+2}x3=18cm\Rightarrow BC=30-18=12cm\)
\(\Rightarrow S_{ABCD}=ABxCD=18x12=216cm^2\)
b/ Nối A với C. Xét tg ABC và tg ABE có chung đáy AB và đường cao hạ từ C xuống AB = đường cao hạ từ E xuống AB nên
\(S_{ABC}=S_{ABE}\) mà 2 tg này có chung phần diện tích là \(S_{ABM}\Rightarrow S_{MBE}=S_{AMC}\) (1)
Xét tg AMC và tg MCD có chung đáy MC và đường cao hạ từ A xuống BC = đường cao hạ từ D xuống BC nên
\(S_{AMC}=S_{MCD}\) (2)
Từ (1) và (2) \(\Rightarrow S_{MBE}=S_{MCD}\)
Câu c
Xét tg AMB và tg AMC có chung đường cao hạ từ A xuống BC nên
\(\frac{S_{AMB}}{S_{AMC}}=\frac{MB}{MC}=\frac{2xMC}{MC}=2\)
Hai tg trên lại có chung đáy AM nên
S(AMB) / S(AMC) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE = 2
Xét tg ABE và tg ACE có chung cạnh đáy AE nên
S(ABE) / S(ACE) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE = 2 => S(ABE)=2xS(ACE)
Ta có S(ACD) = S(ABC) (Nửa diện tích HCN) mà S(ABC) = S(ABE) => S(ABE)=S(ACD) = 2xS(ACE)
\(\frac{S_{ABE}}{S_{ADE}}=\frac{S_{ABE}}{S_{ACD}+S_{ACE}}=\frac{2xS_{ACE}}{2xS_{ACE}+S_{ACE}}=\frac{2}{3}\)
Xét tg ABE và tg ADE có chung đáy AE nên
S(ABE) / S(ADE) = đường cao hạ từ B xuống AE / đường cao hạ từ D xuống AE = 2/3
Xét tg AOB và tg AOD có chung đáy OA nên
S(AOB) / S(AOD) = đường cao hạ từ B xuống AE / đường cao hạ từ D xuống AE = 2/3
Hai tam giác trên lại có chung đường cao hạ từ A xuống BD nên
\(\frac{S_{AOB}}{S_{AOD}}=\frac{OB}{OD}=\frac{2}{3}\)
Chiều rộng của hình chữ nhật ABCD là: \(57:9,5=6\left(m\right)\)
Ta có: \(AM+MB=AB\)
\(\Rightarrow AM+3,5=9,5\)
\(\Rightarrow AM=9,5-3,5=6\left(m\right)\)
Diện tích hình thang AMCD là: \(\frac{1}{2}\times\left(6+9,5\right)\times6=46,5\left(cm^2\right)\)
Đ/s:..
Chiều cao hình thang AMCD :
57 : 9.,5 = 6 cm
Đáy bé AM của hình thang :
9,5 - 3,5 = 6 cm
DT hình thang AMCD :
(9,5 + 6) : 2 x 6 = 46,5 cm2
Vì MB=1/3 × AB
Nên AM=2/3× AB
AM=2/3×12,3
AM=8,2 (m)
DC gấp AM số lần là
12,3:8,2=3/2
Vì DC=3/2 AM
Ta có:S mdc=3/2× S amd (vì 2 tam giác này có đáy DC=3/2× AM,chiều cao hạ từ đỉnh D xuống đáy AM = chiều cao hạ từ đỉnh M xuống đáy DC vì cùng là chiều cao của hình thang vuông AMDC)
Suy ra: S amd=2/3× S mdc
Vậy S amd=2/3× S mdc
1: 107,728
2: 1000 vong
3: 0,126 m2
4: day be 30,4 day lon la 45,6
k nha
Cau 1là 107,728
cau2 là 1000vong
câu 3 là 0,126 m2
câu 4 là 30,4 và 45,6