Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC và tam giác ADC có đường cao hạ từ C xuống AB bằng đường cao hạ từ A xuống CD nên
\(\frac{S_{ABC}}{S_{ADC}}=\frac{AB}{CD}=\frac{1}{3}\)
Hai tam giác trên lại chung đáy AC nên
S(ABC) / S(ADC) = đường cao hạ từ B xuống AC / đường cao hạ từ D xuống AC = 1/3
Xét tam giác BOC và tam giác DOC có chung cạnh đáy OC nên
S(BOC) / S(DOC) = đường cao hạ từ B xuống AC / đường cao hạ từ D xuống AC = 1/3
\(\Rightarrow S_{DOC}=3xS_{BOC}=3x15=45cm^2\)
\(S_{BCD}=S_{BOC}+S_{DOC}=15+45=60cm^2\)
Xét tam giác ABD và tam giác BCD có đường cao hạ từ D xuống AB bằng đường cao hạ từ B xuống CD nên
\(\frac{S_{ABD}}{S_{BCD}}=\frac{AB}{CD}=\frac{1}{3}\Rightarrow S_{ABD}=\frac{S_{BCD}}{3}=\frac{60}{3}=20cm^2\)
\(S_{ABCD}=S_{ABD}+S_{BCD}=20+60=80cm^2\)
Nếu vậy thì tổng diện tích của hai hình tam giác ABI và ICD = 1/2 S hình thang ABCD nên S hình ABCD = ( 24,5+98) x 2