Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a:Xét ΔABD có AB=AD
nên ΔABD cân tại A
=>\(\widehat{ABD}=\widehat{ADB}\)
mà \(\widehat{ABD}=\widehat{BDC}\)
nên \(\widehat{ADB}=\widehat{BDC}\)
mà \(\widehat{BCD}=\widehat{ADC}=\widehat{ADB}+\widehat{BDC}\)
nên \(\widehat{BCD}=2\cdot\widehat{BDC}\)
=>\(\widehat{BCD}=\dfrac{2}{3}\cdot90^0=60^0\)
=>\(\widehat{ADC}=60^0\)
=>\(\widehat{BAD}=\widehat{ABC}=120^0\)
b: Gọi M là trung điểm của CD
Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{CAD}=\widehat{DBC}=90^0\)
Ta có: ΔDBC vuông tại B
mà BM là đường trung tuyến
nên BM=MC
=>ΔBMC cân tại M
mà \(\widehat{MCB}=60^0\)
nên ΔBMC đều
=>BC=MC
Ta có: ΔADC vuông tại A
mà AM là đường trung tuyến
nên MA=MD
=>ΔMAD cân tại M
mà \(\widehat{ADM}=60^0\)
nên ΔMAD đều
=>AD=DM
DM+MC=DC
nên DC=AD+BC=2AB(đpcm)
A B C D O M N
a) Áp dụng Hệ quả Ta Let trong tam giác ADB có: OM // AB
=> \(\frac{OM}{AB}=\frac{OD}{DB}\) (1)
Tương tự, trong tam giác CBA có: ON // AB => \(\frac{ON}{AB}=\frac{OC}{AC}\) (2)
Mặt khác, có AB // CD => \(\frac{OA}{OC}=\frac{OB}{OD}\Rightarrow\frac{OA}{OC}+1=\frac{OB}{OD}+1\Leftrightarrow\frac{AC}{OC}=\frac{BD}{OD}\)
=> \(\frac{OC}{AC}=\frac{OD}{DB}\) (3)
Từ (1)(2)(3) => \(\frac{OM}{AB}=\frac{ON}{AB}\) => OM = ON
b) điều phải chứng minh <=> \(\frac{MN}{AB}+\frac{MN}{CD}=2\)
theo câu a có MN = 2.ON = 2.OM
Xét VT = \(\frac{2.OM}{AB}+\frac{2.ON}{CD}=2.\left(\frac{OM}{AB}+\frac{ON}{CD}\right)\)
Mà \(\frac{OM}{AB}=\frac{OD}{DB}\)(Hệ quả ĐL ta let trong tam giác ADB)
\(\frac{ON}{CD}=\frac{OB}{DB}\) (Hệ quả ĐL ta let trong tam giác CDB)
=> VT = \(2.\left(\frac{OD}{DB}+\frac{OB}{DB}\right)=2.\frac{OD+OB}{DB}=2.\frac{DB}{DB}=2\) = VP
=> ĐPCM
c) Vì AB // CD => tam giác AOB đồng dạng với tam giác COD , tỉ số đồng dạng \(\frac{OB}{OD}\)
=> \(\frac{S_{AOB}}{S_{COD}}=\left(\frac{OB}{OD}\right)^2\Rightarrow\left(\frac{OB}{OD}\right)^2=\frac{2014^2}{2015^2}\Rightarrow\frac{OB}{OD}=\frac{2014}{2015}\)
+) Xét tam giác AOB và AOD có chung chiều cao hạ từ đỉnh A xuống BD
=> \(\frac{S_{AOB}}{S_{AOD}}=\frac{OB}{OD}=\frac{2014}{2015}\Rightarrow S_{AOD}=\frac{2015}{2014}.S_{AOB}=\frac{2015}{2014}.2014^2=2014.2015\)
Tương tự, \(\frac{S_{BOC}}{S_{COD}}=\frac{OB}{OD}=\frac{2014}{2015}\Rightarrow S_{BOC}=\frac{2014}{2015}.S_{COD}=\frac{2014}{2015}.2015^2=2014.2015\)
Vậy \(S_{ABCD=2014^2+2014.2015+2014.2015+2015^2=\left(2014+2015\right)^2=4029^2}\)