Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có AB//CD (2 đáy của hình thang ABCD)
\(\Rightarrow\frac{OA}{OD}=\frac{OB}{OC}=\frac{AB}{CD}\Rightarrow\frac{OA}{OA+AD}=\frac{OB}{OB+BC}=\frac{AB}{CD}\)
Từ \(\frac{OA}{OA+AD}=\frac{AB}{CD}\Rightarrow\frac{OA}{OA+9}=\frac{12}{30}\Rightarrow AO=6cm\)
Từ \(\frac{OB}{OB+BC}=\frac{AB}{CD}\Rightarrow\frac{OB}{OB+15}=\frac{12}{30}\Rightarrow OB=10cm\)
Bài 1:
\(\widehat{B}=180^0-70^0=110^0\)
\(\widehat{D}=180^0-130^0=50^0\)
Bài 2:
Gọi E là trung điểm của CD
Xét tứ giác ABED có
AB//ED
AB=ED
DO đó: ABED là hình bình hành
mà AB=AD
nên ABED là hình thoi
mà \(\widehat{BAD}=90^0\)
nên ABED là hình vuông
=>BE vuông góc với DC
Ta có: ABED là hình vuông
nên DB là tia phân giác của góc ADE
=>\(\widehat{BDE}=45^0\)
Xét ΔBDC có
BE là đường cao
BE là đường trung tuyến
Do đó:ΔBDC cân tại B
=>\(\widehat{C}=45^0\)
hay \(\widehat{ABC}=135^0\)
Ta có: BC // HK, BH // CK (cùng \(\perp\) AD)
=> \(\left\{{}\begin{matrix}BC=HK=9cm\\BH=CK=a\end{matrix}\right.\) (tính chất đoạn chắn)
Có: b + HK + c = AD
=> b + 9 + c = 30
=> b + c = 21
Áp dụng định lí Py-ta-go ta có: \(\left\{{}\begin{matrix}a^2+b^2=AB^2=20^2\\a^2+c^2=CD^2=13^2\end{matrix}\right.\)
Từ vế với vế ta được: b2 - c2 = 202 - 132
=> (b - c)(b + c) = 231
=> (b - c).21 = 231
=> b - c = 11
Mà b + c = 21 nên \(\left\{{}\begin{matrix}c=\dfrac{21-11}{2}=5=KD\\b=21-5=16=AH\end{matrix}\right.\)