Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai tg ABC và BCD có đường cao hạ từ D xuống AB = đường cao hạ từ B xuống CD nên
\(\frac{S_{ABC}}{S_{BCD}}=\frac{AC}{CD}=\frac{1}{3}\Rightarrow S_{BCD}=3xS_{ABC}=3x24=72cm^2\)
\(S_{ABCD}=S_{ABC}+S_{BCD}=24+72=96cm^2\)
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng vơi ΔOCD
=>\(\dfrac{S_{OAB}}{S_{OCD}}=\left(\dfrac{AB}{CD}\right)^2=\dfrac{1}{9}\) và OA/OC=AB/CD=1/3
=>\(S_{OCD}=54\left(cm^2\right)\) và \(S_{BOC}=3\cdot S_{BOA}=3\cdot6=18\left(cm^2\right)\)
=>\(S_{AOD}=18\left(cm^2\right)\)
\(S_{ABCD}=18+18+54+6=60+36=96\left(cm^2\right)\)
Do 2 tam giác ABI và BIC có chung BI nên 2 đường cao kẻ từ A và C xuống BI có tỉ lệ với diện tích: S_ABI/S_BIC = 13,6/20,4 = 2/3
=> S_ADB = 2/3 S_BDC => S_ABC = 2/3 S_ADC
Mà S_ABC = S_ABI + S_BIC = 13,6 + 20,4 = 34 (cm2)
S_ADC = 34 : 2 x 3 = 51 (cm2)
S_ABCD = S_ABC + S_ADC = 34 + 51 = 85 (cm2)
Ai tích mình mình tích lại cho
Nếu vậy thì tổng diện tích của hai hình tam giác ABI và ICD = 1/2 S hình thang ABCD nên S hình ABCD = ( 24,5+98) x 2
( Vẽ hình bạn tự vẽ nha )
S (ABC) = 1/3 S (ACD) : Vì chúng có chiều cao bằng nhau đều là chiều cao hình thang, đáy AB = 1/3 CD
S (ABC) = 1/3 S (ACD) = 1/4 S (ABCD)
S (ABCD) = 12 : 1/4 = 48 (cm2
)
Đ/S: 48 cm2
( Vẽ hình bạn tự vẽ nha )
S (ABC) = 1/3 S (ACD) : Vì chúng có chiều cao bằng nhau đều là chiều cao hình thang, đáy AB = 1/3 CD
S (ABC) = 1/3 S (ACD) = 1/4 S (ABCD)
S (ABCD) = 12 : 1/4 = 48 (cm2)
Đ/S: 48 cm2