Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: S hình thang ABCD là : \(\frac{\left(AB+CD\right)\cdot h}{2}=450\Rightarrow3CD\cdot h=900\Rightarrow h=\frac{900}{3CD}=\frac{300}{CD}\)
Mà hình thang ABCD và tam giác ABC có cùng đường cao hạ từ C
Nên diện tích tam giác ABC là: \(\frac{AB\cdot h}{2}=\frac{2CD\cdot h}{2}=\frac{2CD\cdot\frac{300}{CD}}{2}=300\left(cm^2\right)\)
b) hình tứ giác có diện tích nhỏ nhất là hình thang CMAN (vì CM=CD/2 và AN=AB/2)
Diện tích tứ giác đó là: \(\frac{\left(CM+AN\right)\cdot h}{2}=\frac{1,5CD\cdot\frac{300}{CD}}{2}=225\left(cm^2\right)\)
c)IM<IN (sr nha mình bận một chút)
có gì k cho mình nha
ta có MC cắt BN tại K nên K là trọng tâm tam giác ABC
=> S(BAK)=S(AKC) mà S(KAB)=42dm2
=> S(AKC)=42dm^2
bạn vào câu hỏi tương tự sẽ có lời giải đấy
Ta nối E với D :
Ta có hình như sau :
B C A D E I
ta thấy hình tam giác ADC =\(\frac{1}{2}\)DEAC
\(\Leftrightarrow\)ADE =\(\frac{1}{2}\)DEAC
\(\Rightarrow\)ADE = ADC
Mà đoạn AD = EC = \(\frac{1}{3}\)
\(\Rightarrow\)AE = DC
\(\Rightarrow\)Tam giác AID = Tam giác CIE
(Bạn Vẽ hình nhé)
Coi S là diện tích
Ta có : AID = 1/3 SABI ( chung chiều cao hạ từ đỉnh I xuống đáy AB , AD = 1/3 AI)
SCIE = 1/3 SBIC (chung chiều cao hạ từ đỉnh I xuống đáy BC, EC = 1/3 BC)
Ta thấy: SAID = SCIE vì SAID = SCIE= 1/3
Vậy kết luận SAID = SCIE
(k vào đúng nếu các bạn thấy hợp lí , k vào sai nếu các bạn thấy thiếu hoặc sai nhé)
Vẽ hình ra rồi tinh diện tích hình tam giác ABC và ABN;ABM . Dựa vào công thức tính diện tích hình tam giác rồi so sánh thôi mà. Dễ lắm nhưng mink ko có thời gian để làm bài này ấy cku