Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tg ABD và tg CBD có đường cao từ D->AB = đường cao từ B->CD nên
\(\frac{S_{ABD}}{S_{CBD}}=\frac{AB}{CD}=\frac{2}{5}\)
b/
Gọi O là giao của AC và BD, nối M với O cắt AB tại I
Ta có \(\frac{S_{ABD}}{S_{CBD}}=\frac{2}{5}\) Hai tg này có chung cạnh BD nên
\(\frac{S_{ABD}}{S_{CBD}}=\) đường cao từ A->BD / đường cao từ C->BD \(=\frac{2}{5}\)
Xét tg ABO và tg BCO có chung cạnh BO nên
\(\frac{S_{ABO}}{S_{BCO}}=\)đường cao từ A->BD / đường cao từ C->BD \(=\frac{2}{5}\) Hai tg này có chung đường cao từ B->AC nên
\(\frac{S_{ABO}}{S_{BCO}}=\frac{AO}{CO}=\frac{2}{5}\)
Xét tg AMO và tg CMO có chung đường cao từ M->AC nên
\(\frac{S_{AMO}}{S_{CMO}}=\frac{AO}{CO}=\frac{2}{5}\) Hai tg này có chung cạnh MO nên
\(\frac{S_{AMO}}{S_{CMO}}=\) đường cao từ A->MO / đường cao từ C->MO \(=\frac{2}{5}\)
Xét tg AMI và tg CMI có chung cạnh MI nên
\(\frac{S_{AMI}}{S_{CMI}}=\)đường cao từ A->MO / đường cao từ C->MO \(=\frac{2}{5}\Rightarrow S_{AMI}=\frac{2xS_{CMI}}{5}\)
Chứng minh tương tự ta cũng có
\(\frac{S_{BMI}}{S_{DMI}}=\frac{2}{5}\Rightarrow S_{BMI}=\frac{2xS_{DMI}}{5}\)
\(\Rightarrow S_{AMI}+S_{BMI}=\frac{2}{5}x\left(S_{CMI}+S_{DMI}\right)=\frac{2}{5}x\left(S_{BMI}+S_{BIC}+S_{AMI}+S_{AID}\right)\)
\(\Rightarrow\frac{3}{5}x\left(S_{AMI}+S_{BMI}\right)=\frac{2}{5}x\left(S_{BIC}+S_{AID}\right)\)
\(\Rightarrow\frac{3}{5}xS_{AMB}=\frac{2}{5}x\left(S_{BIC}+S_{AID}\right)\) (*)
Xét tg AID và tg AIC có chung cạnh AI và đường cao từ D->AB = đường cao từ C->AB nên \(S_{AID}=S_{AIC}\) Thay vào (*)
\(\Rightarrow\frac{3}{5}xS_{AMB}=\frac{2}{5}x\left(S_{BIC}+S_{AIC}\right)=\frac{2}{5}xS_{ABC}\Rightarrow\frac{S_{AMB}}{S_{ABC}}=\frac{2}{3}\)
Xét tg AMB và tg ABC có chung đường cao từ A->MC nên
\(\frac{S_{AMB}}{S_{ABC}}=\frac{MB}{BC}=\frac{2}{3}\)
a) Để so sánh diện tích hai tam giác AMC và BMN, ta cần biết thêm thông tin về các độ dài cạnh của hình thang ABCD và vị trí của các điểm A, B, C, D, M, N trên hình thang. Trong đề bài không cung cấp đủ thông tin này, nên không thể trả lời câu hỏi này.
b) Để tính diện tích hình thang ABCD, ta cần biết độ dài hai đáy AB và CD, và chiều cao của hình thang. Tuy nhiên, trong đề bài không cung cấp đủ thông tin này, nên không thể tính được diện tích hình thang ABCD.
Xét \(\Delta\) ACN và tg BCN có chung cạnh CN và đường cao từ A\(\rightarrow\)CD = đường cao từ B xuống CD nên:
\(S_{ACN}=S_{BCN}\Rightarrow S_{AMC}+S_{CMN}=S_{BMN}+S_{CMN}\)
\(\Rightarrow S_{AMC}=S_{CMN}\)
b) Xét \(\Delta\) CMN và tg BMN có chung đường cao từ N \(\rightarrow\) BC nên:
\(\dfrac{S_{CMN}}{S_{BMN}}=\dfrac{MC}{MB}=\dfrac{1}{2}\Rightarrow S_{BMN}=2\times S_{CMN}\)
Mà \(S_{BMN}=S_{AMC}\Rightarrow S_{AMC}=2\times S_{CMN}\)
Xét \(\Delta\) AMC và tg AMB có chung đường cao từ A\(\rightarrow\)BC nên:
\(\dfrac{S_{AMC}}{S_{AMB}}==\dfrac{MC}{MB}=\dfrac{1}{2}\Rightarrow S_{AMB}=2\times S_{AMC}=2\times2\times S_{CMN}=4\times S_{CMN}\)
\(\Rightarrow S_{ABC}=S_{AMB}+S_{AMC}=4\times S_{CMN}+2\times S_{CMN}=6\times S_{CMN}\)
Xét \(\Delta\)ABC và tg ACD có đường cao từ C\(\rightarrow\)AB = đường cao từ A\(\rightarrow\)CD nên:
\(\dfrac{S_{ABC}}{S_{ADC}}=\dfrac{AB}{CD}=\dfrac{1}{2}\Rightarrow S_{ACD}=2\times S_{ABC}=2\times6\times S_{CMN}=12\times S_{CMN}\)
\(\Rightarrow S_{ABCD}=S_{ABC}+S_{ACD}=6\times S_{CMN}=12\times S_{CMN}\)
\(=18\times S_{CMN}=18\times112,5=2025\left(cm^2\right)\)
a. S A B C = 1 3 S A D C (Vì cùng chung chiều cao của hình thang ABCD; đáy AB = 1 3 DC)
b. S A B M = S A C M (Vì cùng chung đáy MA, chiều cao AB = 1 3 DC )
c. Theo phần a, ta có: S A B C = S A D C
Mà S A B C D = S A B C + S A D C
Nên S A B C = 1 1 + 3 S A B C D = 1 4 S A B C D
Do đó S A B C D = 64 × 1 4 = 16 ( c m 2 )
Theo phần b, ta có: S A B M = 1 3 S A C M
Mà S A C M = S M A B + S A B C
Nên S M A B = 1 3 - 1 S A B C = 1 2 S A B C
Do đó S M A B = 16 × 1 4 = 8 ( c m 2 )