Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOBA và ΔODC có
góc OBA=góc ODC
góc BOA=góc DOC
=>ΔOBA đồng dạng với ΔODC
=>OB/OD=OA/OC=AB/CD=1/3
=>S ABO=1/3*S ABC
=>S BOC=2/3*S ABC
b: Kẻ CH vuông góc AB
=>S ABC=1/2*CH*AB
S ABCD=1/2*CH*(AB+CD)
=>S ABC/S ABCD=AB/(AB+CD)
bài này sao khó vậy
mình không làm được đâu
nhưng cô của mình cũng ra bài giống y hệt nếu có người trả lời thì thông báo cho mình biết nha
thank you very much
Xét tg ABD và tg ABC có chung AB và đường cao hạ từ D xuống AB = đường cao hạ từ C xuống AB nên \(S_{ABD}=S_{ABC}\)
Hai tg trên có phần diện tích chung là \(S_{AOB}\Rightarrow S_{AOD}=S_{BOC}\)
Xét tg ABD và tg BCD có đường cao hạ từ D xuống AB = đường cao hạ từ B xuống CD nên
\(\frac{S_{ABD}}{S_{BCD}}=\frac{AB}{CD}=\frac{1}{2}\) Hai tg trên có chung cạnh BD nên
\(\frac{S_{ABD}}{S_{BCD}}=\) đường cao hạ từ A xuống BD / đường cao hạ từ C xuống BD \(=\frac{1}{2}\)
Xét tg AOB và tg BOC có chung cạnh BO nên
\(\frac{S_{AOB}}{S_{BOC}}=\) đường cao hạ từ A xuống BD / đường cao hạ từ C xuống BD \(=\frac{1}{2}\Rightarrow S_{AOB}=\frac{S_{BOC}}{2}=\frac{200}{2}=100cm^2\)
a: \(CD=3\times AB=54\left(cm\right)\)
\(AH=\dfrac{2}{3}\times18=12\left(cm\right)\)
Diện tích hình thang ABCD là:
\(S_{ABCD}=\dfrac{1}{2}\times\left(AB+CD\right)\times AH=\dfrac{1}{2}\times12\times\left(54+18\right)=72\times6=432\left(cm^2\right)\)
Vì AB//CD
nên \(\dfrac{S_{ABD}}{S_{BDC}}=\dfrac{AB}{DC}=\dfrac{1}{3}\)
=>\(S_{BDC}=3\times S_{ABD}\)
mà \(S_{ABD}+S_{BDC}=S_{ABCD}=432\)
nên \(S_{ABD}=\dfrac{432}{4}=108\left(cm^2\right)\)
=>\(S_{BDC}=432-108=324\left(cm^2\right)\)
b: Vì AB//CD
nên \(\dfrac{OA}{OC}=\dfrac{AB}{CD}=\dfrac{1}{3}\)
=>\(\dfrac{S_{AOB}}{S_{BOC}}=\dfrac{OA}{OC}=\dfrac{1}{3}\)
=>\(S_{BOC}=3\times S_{AOB}\)
=>\(S_{BOC}>S_{AOB}\)
c: \(\dfrac{OA}{OC}=\dfrac{1}{3}\)
=>OC=3OA
=>OC>OA
vẽ cả hình