K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2022

chịu thui

 

 

15 tháng 5 2022

ko bt

29 tháng 11 2023

Xét ΔOAB và ΔOCD có

\(\widehat{AOB}=\widehat{COD}\)

\(\widehat{OAB}=\widehat{OCD}\)

Do đó: ΔOAB đồng dạng với ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{1}{2}\)

Vì ABCD là hình thang có AC cắt BD tại O

nên \(S_{AOD}=S_{BOC}=15\left(cm^2\right)\)

\(\dfrac{OA}{OC}=\dfrac{1}{2}\)

=>\(S_{AOB}=\dfrac{1}{2}\cdot S_{BOC}\)

=>\(S_{AOB}=\dfrac{1}{2}\cdot15=7,5\left(cm^2\right)\)

\(\dfrac{OA}{OC}=\dfrac{1}{2}\)

=>\(\dfrac{S_{OAD}}{S_{DOC}}=\dfrac{AO}{OC}=\dfrac{1}{2}\)

=>\(S_{DOC}=30\left(cm^2\right)\)

\(S_{ABCD}=S_{AOB}+S_{BOC}+S_{DOC}+S_{AOD}\)

\(=30+15+15+7,5=52,5\left(cm^2\right)\)

Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng vơi ΔOCD
=>\(\dfrac{S_{OAB}}{S_{OCD}}=\left(\dfrac{AB}{CD}\right)^2=\dfrac{1}{9}\) và OA/OC=AB/CD=1/3

=>\(S_{OCD}=54\left(cm^2\right)\) và \(S_{BOC}=3\cdot S_{BOA}=3\cdot6=18\left(cm^2\right)\)

=>\(S_{AOD}=18\left(cm^2\right)\)

\(S_{ABCD}=18+18+54+6=60+36=96\left(cm^2\right)\)

13 tháng 3 2021

Hai tg ABC và BCD có đường cao hạ từ D xuống AB = đường cao hạ từ B xuống CD nên

\(\frac{S_{ABC}}{S_{BCD}}=\frac{AC}{CD}=\frac{1}{3}\Rightarrow S_{BCD}=3xS_{ABC}=3x24=72cm^2\)

\(S_{ABCD}=S_{ABC}+S_{BCD}=24+72=96cm^2\)