Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)
Ta có: \(\widehat A + 23^\circ + 23^\circ = 180^\circ \)
Suy ra: \(\widehat A = 180^\circ - 23^\circ - 23^\circ = 134^\circ \).
Bài 1:
*) Ta có: AC // Ox
Oy cắt AC tại C, cắt Ox tại O
Từ hai điều trên suy ra: \(\widehat{xOy}\)và \(\widehat{ACy}\)là 2 góc đồng vị bằng nhau
Mà \(\widehat{xOy}\)= \(70^o\)=> \(\widehat{ACy}\)= \(70^o\)
*) Ta có: BA // Oy
AC cắt BA tại A, cắt Oy tại C
Từ 2 điều trên suy ra: \(\widehat{ACy}=\widehat{DAz}\)(2 góc đồng vị bằng nhau)
=> \(\widehat{DAz}\)= \(70^o\)
Ta có: \(\widehat{DAz}\)và \(\widehat{BAC}\)là 2 góc đối đỉnh
=> \(\widehat{BAC}\)= \(70^o\)
Ta có: \(\widehat{BAC}\)+ \(\widehat{CAz}=180^o\)(2 góc kề bù)
=> \(\widehat{CAz}=110^o\)
Mà \(\widehat{CAz}\)và \(\widehat{BAD}\)là 2 góc đối đỉnh => \(\widehat{BAD}\)= \(110^o\)
Vậy...
VD: tên Δ là ABC
Xét ΔABC cân tại A
Nên góc B = góc C= 50o
Ta có: Â + B+ C= 180o
A+ 50o+ 50o=180o
 =180o-(50o+50o)
 =80o
b) Xét Δ ABC cân tại A
Ta có: Â + B + C = 180o
70o+B + C= 180o
B + C=180o- 70o
B +C= 110o( mà B= C)
Suy ra: B = C= 110o:2= 55o
c)Xét ΔABC cân tại A
Ta có: Â + B + C =180o
Ao + B + C= 180o
B+ C=180o- Ao ( mà B= C)
Suy ra: B= C= 180o- Ao:2
(Chú thích: Ao: a độ)
a) góc ở đỉnh bằng 80 độ
b) góc ở đáy bằng 55 độ
c) số đo góc B và góc C = (180 - góc A): 2
a: Số đo góc ở đáy là:
\(180^0-2\cdot70^0=20^0\)
b: Số đo góc ở đỉnh là:
\(180^0-2\cdot50^0=80^0\)
Vì AD vuông góc với hai đáy AB và CD nên \(\widehat{A}=\widehat{D}=90^0\)
Vì ABCD có 2 đáy AB,CD nên AB // CD. Do đó, \(\widehat B + \widehat C = 180^\circ \) ( 2 góc trong cùng phía)
Mặt khác:
\(\begin{array}{l}\widehat B = 2.\widehat C\\ \Rightarrow 2.\widehat C + \widehat C = 180^\circ \\ \Rightarrow 3.\widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ :3 = 60^\circ \end{array}\)
\(\Rightarrow \widehat B = 2. \widehat{C}=2.60^0=120^0\)
Vậy \(\widehat{A}=\widehat{D}=90^0; \widehat B = 120^0; \widehat C =60^0\)
2.2:3+1.2.2:3.2+1