Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Sửa đề: \(\widehat{A}=\widehat{D}=90^0\)
a) -△OAB và △OCD có: \(\widehat{OAB}=\widehat{OCD};\widehat{AOB}=\widehat{COD}\)
\(\Rightarrow\)△OAB∼△OCD (g-g).
b) \(AC^2-BD^2=DC^2-AB^2\)
\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)
\(\Leftrightarrow AD^2=AD^2\) (luôn đúng).
c) -△BCD có: OI//DC \(\Rightarrow\dfrac{DC}{OI}=\dfrac{BD}{BO}\Rightarrow\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\)
-△AOB có: AB//DC \(\Rightarrow\dfrac{OD}{BO}=\dfrac{DC}{AB}=\dfrac{DC}{OI}-1\)
\(\Rightarrow\dfrac{DC}{AB}+1=\dfrac{DC}{OI}\Rightarrow\dfrac{DC+AB}{AB}=\dfrac{DC}{OI}\Rightarrow\dfrac{1}{OI}=\dfrac{DC+AB}{DC.AB}=\dfrac{1}{AB}+\dfrac{1}{DC}\)
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: BD=căn 8^2+6^2=10cm
BE=10^2/6=100/6=50/3cm
EC=DC^2/BC=8^2/6=32/3cm
Xét ΔEBD có CH//BD
nên CH/BD=EC/EB
=>CH/10=32/50=16/25
=>CH=160/25=6,4cm
a) Xét ΔOIC và ΔABC có:
\(\widehat{ACB}\) : góc chung
\(\widehat{OIC}=\widehat{ABC}\) (đồng vị do JI//AB(gt))
=> ΔOIC~ΔABC(g.g)
=>\(\frac{OI}{AB}=\frac{CI}{BC}\)
=> BC.OI=AB.CI
b) Theo định lý đảo của định lý ta-let vào ΔBDC :
=> \(\frac{OI}{DC}=\frac{BI}{BC}\)
b)hình thang ABCD cóAB//CD=> góc ABO=góc ODC và góc BAO= góc OCD
=>tam giác ABO đồng dạng với tam giác CDO
=>DO/BO=CO/AO=>DO/BO+DO=CO/CO+OA=>DO/DB=CO/CA