Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABKD có \(\hat{BAD}=\hat{ADK}=\hat{BKD}=90^0\)
nên ABKD là hình chữ nhật
=>AB=DK và BK=AD
AB=DK
mà AB=4cm
nên DK=4cm
Ta có: DK+KC=DC
=>KC=DC-DK=9-4=5(cm)
ΔBKC vuông tại K
=>\(BK^2+KC^2=BC^2\)
=>\(BK^2=13^2-5^2=144=12^2\)
=>BK=12(cm)
mà BK=AD
nên AD=12cm
M là trung điểm của AD
=>\(AM=MD=\frac{AD}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)
b: Xét ΔABM vuông tại A và ΔDMC vuông tại D có
\(\frac{AB}{DM}=\frac{AM}{DC}\left(\frac46=\frac69=\frac23\right)\)
Do đó: ΔABM~ΔDMC
c: ΔABM~ΔDMC
=>\(\hat{ABM}=\hat{DMC}\)
mà \(\hat{ABM}+\hat{AMB}=90^0\) (ΔAMB vuông tại A)
nên \(\hat{DMC}+\hat{AMB}=90^0\)
Ta có: \(\hat{AMB}+\hat{BMC}+\hat{CMD}=180^0\)
=>\(\hat{BMC}=180^0-90^0=90^0\)

a) Ta có: \(\frac{4}{6}=\frac{6}{9}\left(=\frac{2}{3}\right)\)
hay \(\frac{AB}{AD}=\frac{AD}{DC}\)
Xét \(\Delta BAD\) và \(\Delta ADC\)có:
\(\widehat{BAD}=\widehat{ADC}=90^0\)
\(\frac{AB}{AD}=\frac{AD}{DC}\)
suy ra: \(\Delta BAD~\Delta ADC\)(c.g.c)
b) \(\Delta BAD~\Delta ADC\)
\(\Rightarrow\) \(\widehat{ABD}=\widehat{DAC}\)
mà \(\widehat{ABD}+\widehat{ADB}=90^0\)
\(\Rightarrow\)\(\widehat{DAC}+\widehat{ADB}=90^0\)
\(\Rightarrow\)\(AC\)\(\perp\)\(BD\)
c) Xét \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{OAB}=\widehat{OCD}\) (slt)
\(\widehat{OBA}=\widehat{ODC}\) (slt)
suy ra: \(\Delta AOB~\Delta COD\) (g.g)
\(\Rightarrow\)\(\frac{S_{AOB}}{S_{COD}}=\left(\frac{AB}{CD}\right)^2=\left(\frac{4}{9}\right)^2=\frac{16}{81}\)
tại sao diện tích tam giác aob/diện tích tam giác cod bằng (ab/cd)^2 giải thích hộ với

a: Xét ΔBAD vuông tại A và ΔADC vuông tại D có
BA/AD=AD/DC
=>ΔBAD đồng dạng với ΔADC
b: ΔBAD đồng dạng với ΔADC
=>góc BDA=góc ACD
Xét ΔOAD và ΔDAC có
góc ODA=góc DCA
góc A chung
=>ΔOAD đồng dạng với ΔDAC
=>góc AOD=góc ADC=90 độ
=>AC vuông góc BD tại O
c: Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>S OAB/S OCD=(AB/CD)^2=(4/9)^2=16/81