\(\dfrac{AE}{ED}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

a, Ta có BC//ED

      BE//CD

=> BEDC là hình bình hành

=> BC=ED=2cm(đpcm) 

b,  BEDC là hình bình hành 

=> BE=CD mà CD=AB(hình thang abcd cân)

=> BE=AB

=> TgABE cân tại B có góc A=60

=> tg ABE đều

c,

2 tháng 9 2017

c, tg ABE cân tại B có AH là đường cao đồng thời là đường trung tuyến

=> AH=AE

ta có AE=AD-AE=4-2=2

=> AH=1/2AE=1(đpcm)

18 tháng 2 2019

A B C D E F I

Gọi I là giao điểm của BD và EF

EI//AB => \(\frac{DE}{AD}=\frac{ID}{DB}\)

IF//DC => \(\frac{BI}{BD}=\frac{BF}{BC}\)

=> \(\frac{DE}{AD}+\frac{BF}{BC}=\frac{ID}{DB}+\frac{BI}{BD}=\frac{BI+ID}{BD}=\frac{BD}{BD}=1\)

19 tháng 4 2020

D C E I F A B

Gọi I là giao điểm của DB và EF

Xét tam giác ADB 

Có : EI // AB

\(\Rightarrow\frac{DE}{AD}=\frac{ID}{DB}\)( 1 )

Xét tam giác DBC 

Có : IF // DC

\(\Rightarrow\frac{BI}{BD}=\frac{BF}{BC}\)( 2 )

Từ (1)(2) , suy ra

\(\frac{DE}{AD}+\frac{BF}{BC}=\frac{ID}{DB}+\frac{BI}{BD}=\frac{BI+ID}{BD}=\frac{BD}{BD}=1\)

Vậy : \(\frac{ED}{AD}+\frac{BF}{BC}=1\)

Em làm kiểu này không biết có đúng không cô Chi check lại giúp em ạ <3

22 tháng 4 2017

Giải:

a) Nối AC cắt EF tại O

∆ADC có EO // DC => AEEDAEED = AOOCAOOC (1)

∆ABC có OF // AB => AOOCAOOC = BFFCBFFC (2)

Từ 1 và 2 => AEEDAEED = BFFCBFFC

b) Từ AEEDAEED = BFFCBFFC => AEED+AEAEED+AE= BFFC+BFBFFC+BF

hay AEADAEAD=BFBCBFBC

c) Từ AEEDAEED = BFFCBFFC => AE+EDEDAE+EDED= BF+FCFCBF+FCFC

=> AD

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
30 tháng 1 2018

Violympic toán 8

10 tháng 4 2018

Câu d, là câu riêng luôn rồi nhé 

Đặt các cạnh hình vuông là a, BM= BE= x 

\(\Rightarrow S_{MBE}=\frac{x^2}{2}\)

\(S_{AMD}=S_{CED}=\frac{a\left(a-x\right)}{2}\)

Ta có: \(S_{DEN}=a^2-\left(a\left(a-x\right)+\frac{x^2}{2}\right)\)

\(=\frac{2a^2-2a^2+2ax-x^2}{2}\)

\(=\frac{a^2-\left(a^2-2ax+x^2\right)}{2}\)

\(=\frac{a^2}{2}-\frac{\left(a-x\right)^2}{2}\le\frac{a^2}{2}\)

Dấu "=" xảy ra khi: a=x <=> BC=BE <=> E trùng C 

Quá trình mình làm chỉ tắt những ý chính, bạn làm bài cần làm đầy đủ hơn!!!