K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

từ A kẻ đường thẳng song song với BC cắt CD tại E

tứ giác ABCE là hình bình hành AB=CE=4cm;AE=BC=5cmDE=CD-EC=4cm

xét Δ ADE có:AD2+DE2=32+42=25

AE2=52=25AD2+DE2=AE2

⇒Δ⇒ΔADE vuông tại D ⇒AD⊥DE hay AD⊥DC

tứ giác ABCD là hình thang vuông 

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:
Kẻ đường cao $AM$ và $BN$ của hình thang

Dễ cm $ABNM$ là hình chữ nhật nên $MN=AB=4$ (cm)

$DM+CN=DC-MN=8-4=4$ (cm)

Áp dụng định lý Pitago:

$DM^2=DA^2-AM^2=9-h^2$
$CN^2=BC^2-BN^2=25-h^2$

$\Rightarrow CN^2-DM^2=25-9=16$

$\Leftrightarrow (CN-DM)(CN+DM)=16$

$\Leftrightarrow 4(CN-DM)=16$

$\Leftrightarrow CN-DM=4$

Vậy $CN-DM=CN+DM\Rightarrow DM=0$ hay $D\equiv M$

$\Rightarrow AD\perp CD$ nên $ABCD$ là hình thang vuông tại $D$ và $A$

 

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Hình vẽ:

a: Sửa đề: O là giao của AC và BD

Xét ΔADC và ΔBCD có

AD=BC

DC chung

AC=BD

=>ΔADC=ΔBCD

=>góc ODC=góc OCD=45 độ

=>ΔDOC vuông cân tại O

b: góc OAB=góc ODC=45 độ

=>ΔOAB vuông cân tại O

=>2*OB^2=AB^2

=>AB=OB*căn 2
ΔODC vuông cân tại O

=>DC=OD*căn 2

=>AB+DC=6*căn 2(cm)

Kẻ BH vuông góc DC

Xét ΔBHD vuông tại H có góc BDH=45 độ

nên BH=BD*sin45=3*căn 2(cm)

=>S ABCD=1/2*3*căn 2*6căn 2=18cm2

21 tháng 2 2020

may bn giai gap gium mik cam on may bn yeu nhiu😋😋😋😋

21 tháng 2 2020

A B C D M N H

a) \(S_{ABCD}=\frac{\left(3+7\right).4}{2}=20\left(cm^2\right)\)

b) Ta có : MA = MD

                NB = NC

\(\Rightarrow\)MN là đường trung bình của hình thang ABCD

\(\Rightarrow\)MN // BC (1)

Ta có : MD ⊥ BC

            NH ⊥ BC

\(\Rightarrow\)MD // NH (2)

Từ (1) và (2) suy ra : Tứ giác MNHD là hình bình hành

Mà : \(\widehat{MDH}=90^o\)

\(\Rightarrow\)Tứ giác MNHD là hình chữ nhật (dhnb)

Vì M là trung điểm của AD

\(\Rightarrow\)MD = \(\frac{1}{2}\)AD

\(\Rightarrow\)MD = 2 cm

Vì MN là đường trung bình của hình thang ABCD

\(\Rightarrow MN=\frac{3+7}{2}=5cm\)

Vậy \(S_{MNHD}=MD.MN=2.5=10\left(cm^2\right)\)