K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

                          A B O C D

Vì ABCD là hình thang \(\Rightarrow AB//CD\)\(\Rightarrow\widehat{OAB}=\widehat{OCD}\)\(\widehat{OBA}=\widehat{ODC}\)( so le trong )

Xét \(\Delta AOB\)và \(\Delta COD\)ta có:

+) \(\widehat{AOB}=\widehat{COD}\)( đối đỉnh )

+) \(\widehat{OAB}=\widehat{OCD}\)( chứng minh trên )

+) \(\widehat{OBA}=\widehat{OCD}\)( chứng minh trên )

\(\Rightarrow\Delta AOB~\Delta COD\)\(g.g.g\) ) ( đpcm ) 

a: XétΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng với ΔOCD

b: OE là phân giác của góc COD trong ΔCOD

nên EC/ED=OC/OD=OA/OB

a: Xét ΔBAD vuông tại A và ΔADC vuông tại D có

BA/AD=AD/DC

=>ΔBAD đồng dạng với ΔADC

b: ΔBAD đồng dạng với ΔADC

=>góc BDA=góc ACD

Xét ΔOAD và ΔDAC có

góc ODA=góc DCA

góc A chung

=>ΔOAD đồng dạng với ΔDAC

=>góc AOD=góc ADC=90 độ

=>AC vuông góc BD tại O

c: Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng với ΔOCD

=>S OAB/S OCD=(AB/CD)^2=(4/9)^2=16/81