K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

A B C D H K 2 5

Kẻ AH và BK vuông góc với CD ta có:

AH//BK mà AB//HK nên ABKH là hình bình hành

Ta có góc H = góc K = 90 độ suy ra hình bình hành ABKH là hình chữ nhật

Suy ra HK=AB=2 (cm) nên DH+CK=CD-HK=5-2=3 (cm)

Xét tam giác AHD và tam giác BKC ta có:

góc H = góc K =90 độ

góc D = góc C (ABCD là hình thang cân)

AD=BC (ABCD là hình thang cân) 

Do đó tam giác AHD = tam giác BKC ( cạnh huyền - góc nhọn) 

Suy ra DH=CK (2 cạnh tương ứng)

Suy ra DK= 3/2=1.5

Ta lại có góc DAH + góc HAB = góc A

nên góc DAH = góc A - góc HAB = 127-90= 37 độ

tan góc DAH = \(\frac{DH}{AH}\)  suy ra AH= \(\frac{DH}{\tan DAH}\)

                                                =\(\frac{1,5}{\tan37}\approx2\left(cm\right)\)

SABCD \(\frac{\left(AB+CD\right)\cdot AH}{2}=\frac{\left(2+5\right)\cdot2}{2}=7\left(cm^2\right)\)

 

18 tháng 8 2020

A B C D 2cm 60cm H E 6cm F E H

Mik ghi ý th, bạn tự giải chi tiết nha

a)Vẽ BE//AD,BH vuông góc CD.

CM đc ABED là hình bình hành => DE=2,EC=4

Tam giác BEC vuông tại B và có góc C =30 nên BE=EC:2=4:2=2

=>AD=BE=2

b)

Tam giác BEH vuông tại H có EBH=30 =>EH=BE/2=2:2=1

Dùng định lý PTG ta tính đc đường cao rồi tính đc diện tích nha.

9 tháng 8 2021

từ các đỉnh A,B hạ các đường cao AE,BF vuông góc với CD

dễ chứng minh tứ giác ABFE là hình chữ  nhật

=>EF=AB=12cm

do ABCD là hình thang cân \(=>AD=BC,\angle\left(D\right)=\angle\left(C\right)\)

mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^O\)

\(=>\Delta ADE=\Delta BFC\left(ch-cgn\right)=>DE=FC=\dfrac{1}{2}.\left(DC-EF\right)\)

\(=\dfrac{1}{2}\left(18-12\right)=3cm\)

xét trong tam giác BFC vuông tại F

\(=>\)\(\cos75^o=\dfrac{FC}{BC}=>BC=11,6cm\)

pytago \(=>BF=\sqrt{BC^2-FC^2}=\sqrt{11,6^2-3^2}=11,2cm\)

\(=>S=\dfrac{BF\left(AB+DC\right)}{2}=....\) thay số

5 tháng 8 2021

Kẻ `AH, CK` vuông góc `CD`.

Xét `\DeltaADH` và `\DeltaBCK` có:

`AH =CK` 

`\hatD=\hatC`

`AD=BC` 

`=> \DeltaADH=\DeltaBCK`

`=> DH=CK=x`

Có: `CD=DH+HK+KC = x+12+x=18 => x=3` (cm)

`tanC=(BK)/(CK) <=> tan75^@ = (BK)/3 => BK =6+3\sqrt3 (cm)`

`=> S=1/2 .(AB+CD) .BK = 90+45\sqrt3 ≈ 168 (cm^2)`