Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình thang ABCD(AB // CD).M,N lần lượt là trung điểm AD và BC. MN cắt BD,AC theo thức tự ở I và K. Tính độ dài IK biết AB= 10,26cm và CD=22,4cm
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
=>ΔBDC đồng dạng vói ΔHBC
b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)
HC=15^2/25=9cm
HD=25-9=16cm
a, Xét tam giác BDC và tam giác HBC ta có
^DBC = ^BHC = 900
^C _ chung
Vậy tam giác BDC ~ tam giác HBC ( g.g )
b, Vì tam giác BDC ~ tam giác HBC nên
\(\frac{BC}{HC}=\frac{DC}{BC}\)( tỉ số đồng dạng )
\(\Rightarrow BC^2=HC.DC\)
c, Ta có : \(BC^2=HC.DC\)( cm b )
\(\Rightarrow HC=\frac{BC^2}{DC}=\frac{225}{25}=9\)cm
\(\Rightarrow HD=DC-HC=25-9=16\)cm
Sửa đề: đường cao BH
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
=>ΔBDC đồng dạng với ΔHBC
b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)
HC=15^2/25=9cm
HD=25-9=16cm
a, Ta có SBDC = DB.BC = BH.DC ⇒ DB/BH=DC/BC
Ta có ∠BHD = ∠DBC (=90 độ)
⇒ △BDC ∼ △HBC (T/c đồng dạng thứ 3)
b, Áp dụng đ/lí Pitago vào △ vuông DBC, ta có:
DC2=BD2 + BC2 ⇒ BD2=400 ⇒ BD=20 cm
Từ câu a, DB.BC = BH.DC ⇒ BH = 300/25 = 12 cm
Áp dụng đ/lí Pitago vào △ vuông DBH, ta có:
DB2 = DH2 + BH2 ⇒ DH = 16 cm
Ta có HC = DC - DH = 25 - 16 = 9 cm