K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)

Lấy K làm trung điểm của BC

=> MK là đường trung bình của hình thang ABCD

\(\Rightarrow MK=\frac{AB+CD}{2}\)(*)

Tam giác MBC vuông tại M, MK là trung tuyến

\(\Rightarrow MK=\frac{BC}{2}\)(**)

Từ (*) và (**) => AB + CD = BC

b)

Ta có:

\(\widehat{HMC}=\widehat{MBC}=\widehat{KBM}\)

\(\widehat{KMB}=\widehat{KBM}\)

\(\widehat{KMB}=\widehat{DMC}\)

\(\Rightarrow\widehat{HMC}=\widehat{DCM}\)

Ta có:

\(\widehat{HMC}=\widehat{DCM}\)

\(\widehat{MDC}=\widehat{MHC}=90^o\Rightarrow\Delta HMC=\Delta DMC\left(ch-gn\right)\)

\(MC\)chung \(\Rightarrow MH=MD;CH=CD\)

=> MC là đường trung trực của DH => \(MC\perp DH\)và \(MB\perp MC\)

\(\Rightarrow DH//MB\Rightarrow MBHD\)là hình thang

A B E D C M H

4 tháng 3 2022

a) -Qua B kẻ đường thẳng vuông góc với DC tại E.

-Xét tứ giác ABED: \(\widehat{ADE}=\widehat{BAD}=\widehat{DEB}=90^0\)

\(\Rightarrow\)ABED là hình chữ nhật nên \(AD=BE\)\(AB=ED=4\left(cm\right)\)

-Xét △BEC vuông tại E:

\(BE^2+EC^2=BC^2\) (định lí Py-ta-go)

\(\Rightarrow BE^2+\left(DC-DE\right)^2=BC^2\)

\(\Rightarrow BE^2+\left(9-4\right)^2=13^2\)

\(\Rightarrow BE^2=13^2-5^2=144\)

\(\Rightarrow BE=AD=12\left(cm\right)\)

b) \(S_{ABCD}=\dfrac{AD.\left(AB+CD\right)}{2}=\dfrac{12.\left(4+9\right)}{2}=78\left(cm^2\right)\)

c) -Đề sai.

22 tháng 5 2023

a) GỌi E là trung điểm của CD, chi ra ABED là hình vuônng và BEC là tam giác vuông cân.

Từ đó suy ra AB = AD = a, BC = 2a

Diện tích của hình thang ABCD là:

S = (��+��).��2 = (�+2�).�2 = 3�22

b) ���^ = ���^ (1) ( 2 góc nhọn có cặp cạnh tương ứng vuông góc)

Xét hai tam giác ADC và IBD vuông tại D và B có:

���� = ���� = 12, do đó hai tam giác ADC và IBD đồng dạng

Suy ra ���^ = ���^  (2)

Từ (1), (2)  ���^ = ���^ 

Mà ���^ + ���^  = 45�  ���^ = ���^  = 45� hay ���^ = 45�

Chúc bạn học tốtt

#𝗝𝘂𝗻𝗻

 

 
22 tháng 5 2023

Thanks!

27 tháng 12 2019

a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)

⇔ AB = DM và AB // DM

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC

c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

Xét tam giác vuông AHB, ta có :

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

⇒ BC = AM = 3 (cm)

Ta có:

M là trung điểm của DC nên

SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)

Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)

⇔ SABD = SBMD = 3 (cm2)

Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)

5 tháng 2 2021

Mày N Mày Chết M Mày Đi Kêu Cặk

1: Xét tứ giác ADME co

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

Xét ΔABC có

DM//AC

nên DM/AC=BD/BA=BM/BC

=>D là trung điểm của BA

Xét ΔABC có ME//AB

nên ME/AB=CM/CB=CE/CA=1/2

=>E là trung điểm của AC

=>EM//BD và EM=BD

=>BMED là hình bình hành

Xét tứ giác DMCE có

DM//CE

DM=CE

Do đó: DMCE là hình bình hành

2: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

AD=AB/2=3cm

AE=AC/2=4cm

\(S_{ADME}=3\cdot4=12\left(cm^2\right)\)

3: ΔHAC vuông tại H

mà HE là trung tuyến

nên HE=AC/2=MD

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

Xét tứ giác DHME có

DE//MH

MD=HE

Do đo: DHME là hình thang cân