K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔOAB đồng dạng với ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)

=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)

=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)

=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)

=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(1)

Xét ΔADC có OE//DC

nên \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(2\right)\)

Xét ΔBDC có OH//DC

nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)

=>OE=OH

22 tháng 12 2023

Xét ΔADC có OE//DC

nên \(\dfrac{OE}{DC}=\dfrac{AE}{AD}\left(1\right)\)

Xét ΔBDC có OH//DC

nên \(\dfrac{OH}{DC}=\dfrac{BH}{BC}\left(2\right)\)

Xét hình thang ABCD có EH//AB//CD

nên \(\dfrac{AE}{ED}=\dfrac{BH}{HC}\)

=>\(\dfrac{ED}{AE}=\dfrac{CH}{HB}\)

=>\(\dfrac{ED+AE}{AE}=\dfrac{CH+HB}{HB}\)

=>\(\dfrac{AD}{AE}=\dfrac{CB}{HB}\)

=>\(\dfrac{AE}{AD}=\dfrac{BH}{BC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)

=>OE=OH

22 tháng 12 2023

Ta có \( \mathrm{OE} = \frac{1}{2}(\mathrm{AC} - \mathrm{BD}) \) và \( \mathrm{OH} = \frac{1}{2}(\mathrm{AC} - \mathrm{BD}) \).

Vì \( \mathrm{AB} / / \mathrm{CD} \), nên các tam giác \( \mathrm{ABE} \) và \( \mathrm{CDH} \) đồng dạng.

Do đó, \( \frac{\mathrm{AE}}{\mathrm{AD}} = \frac{\mathrm{CH}}{\mathrm{CD}} \).

Tương tự, \( \frac{\mathrm{BE}}{\mathrm{BA}} = \frac{\mathrm{CH}}{\mathrm{CD}} \).

Tổng hai phương trình trên ta có \( \frac{\mathrm{AE}+\mathrm{BE}}{\mathrm{AD}+\mathrm{BA}} = \frac{\mathrm{CH}}{\mathrm{CD}} \).

Nhưng \( \mathrm{AD}+\mathrm{BA} = \mathrm{AD}+\mathrm{BC} = \mathrm{AC} \) và \( \mathrm{AE}+\mathrm{BE} = \mathrm{AE}+\mathrm{AD} = \mathrm{DE} \).

Vậy \( \frac{\mathrm{DE}}{\mathrm{AC}} = \frac{\mathrm{CH}}{\mathrm{CD}} \) hoặc \( \mathrm{DE} = \frac{\mathrm{CH} \cdot \mathrm{AC}}{\mathrm{CD}} \).

Lưu ý rằng \( \mathrm{CH} \) là độ dài đoạn thẳng vuông góc từ \( \mathrm{C} \) đến \( \mathrm{AB} \), nên \( \mathrm{CH} = \frac{\mathrm{CD} \cdot \mathrm{BH}}{\mathrm{BC}} \).

Do đó, \( \mathrm{DE} = \frac{\mathrm{CD} \cdot \mathrm{BH} \cdot \mathrm{AC}}{\mathrm{BC} \cdot \mathrm{CD}} \).

Hóa giản và ta có \( \mathrm{DE} = \frac{\mathrm{BH} \cdot \mathrm{AC}}{\mathrm{BC}} \).

Xét tam giác \( \mathrm{BHE} \), ta thấy \( \mathrm{OE} \) là đoạn trung bình của \( \mathrm{BH} \), nên \( \mathrm{OE} = \frac{1}{2}\mathrm{BH} \).

Tổng kết lại, \( \mathrm{OE} = \frac{1}{2} \cdot \frac{\mathrm{BH} \cdot \mathrm{AC}}{\mathrm{BC}} = \frac{\mathrm{DE}}{2} = \mathrm{OH} \).

Vậy, chúng ta đã chứng minh được \( \mathrm{OE} = \mathrm{OH} \).

15 tháng 6 2018

Bài tập: Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng hệ quả của định lí Ta – lét cho OE//DC,

OF//DC và AB//DC ta được:

Bài tập: Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Điều phải chứng minh.

22 tháng 8 2017

Áp dụng hệ quả của định lí Ta – lét cho OE//DC,

OF//DC và AB//DC ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Điều phải chứng minh.

a:Xét hình thang ABCD có 

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét ΔDAB có 

M là trung điểm của AD

ME//AB

Do đó: E là trung điểm của BD

Xét ΔABC có 

N là trung điểm của BC

NF//AB

Do đó: F là trung điểm của AC

24 tháng 10 2021

SGK k để lm cảnh, lên Tech12 hoặc Vietjack

24 tháng 10 2021

a: Xét hình thang ABCD có 

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét ΔADC có 

M là trung điểm của AD

MF//DC

Do đó: F là trung điểm của AC

Xét ΔBDC có 

N là trung điểm của BC

NE//DC

Do đó: E là trung điểm của BD

Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔOAB đồng dạng với ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{6}{9}=\dfrac{2}{3}\)

\(\dfrac{OA}{OC}=\dfrac{2}{3}\)

=>\(OC=1,5OA\)

\(\dfrac{OB}{OD}=\dfrac{2}{3}\)

=>\(OD=3\cdot\dfrac{OB}{2}=1,5OB\)

AO+OC=AC

=>1,5OA+OA=OC

=>OC=2,5OA

=>\(\dfrac{OC}{OA}=2,5=\dfrac{5}{2}\)

=>\(\dfrac{OA}{OC}=\dfrac{2}{5}\)

OB+OD=BD

=>BD=1,5OB+OB=2,5OB

=>\(\dfrac{OB}{BD}=\dfrac{2}{5}\)

Xét ΔADC có MO//DC

nên \(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)

=>\(\dfrac{MO}{9}=\dfrac{2}{5}=0,4\)

=>MO=0,4*9=3,6(cm)

Xét ΔBDC có ON//DC

nên \(\dfrac{ON}{DC}=\dfrac{BO}{BD}\)

=>\(\dfrac{ON}{9}=\dfrac{2}{5}\)

=>ON=0,4*9=3,6(cm)

MN=MO+ON

=3,6+3,6

=7,2(cm)

a: Xét ΔOAB và ΔOCD có 

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔOAB\(\sim\)ΔOCD

b: Xét hình thang ABCD có HK//AB//CD

nên AH/AD=BK/BC(1)

Xét ΔADC có OH//DC

 nên OH/DC=AH/AD(2)

Xét ΔBDC có OK//DC

nên OK/DC=BK/BC(3)

Từ (1), (2) và (3) suy ra OH=OK

hay O là trung điểm của HK