Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a: Xét ΔABE và ΔKCE có
\(\widehat{ABE}=\widehat{KCE}\)
BE=CE
\(\widehat{AEB}=\widehat{KEC}\)
Do đó: ΔABE=ΔKCE
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath
Kẻ F la trung điểm AD
\(\left\{{}\begin{matrix}AF=FD\\BE=EC\end{matrix}\right.\Rightarrow EF\) là đtb hthang ABCD
\(\Rightarrow EF//AB//CD;2EF=AB+CD\left(1\right)\)
\(\left\{{}\begin{matrix}\widehat{D_2}=\widehat{E_1}\left(so.le.trong\right)\\\widehat{D_1}=\widehat{D_2}\left(t/c.phân.giác\right)\end{matrix}\right.\Rightarrow\widehat{D_1}=\widehat{E_1}\Rightarrow\Delta DEF.cân\Rightarrow DF=EF\)
Mà \(DF=\dfrac{1}{2}AD\left(F.là.trung.điểm.AD\right)\Rightarrow EF=\dfrac{1}{2}AD\)
\(\Rightarrow2EF=AD\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AD=AB+CD\)
\(2,EF=\dfrac{1}{2}AD\Rightarrow\Delta AED\) vuông tại E
\(\Rightarrow\widehat{A_1}+\widehat{D_1}=90^0\)
Mà \(\widehat{D_1}+\widehat{E_2}=\widehat{E_1}+\widehat{E_2}=90^0\)
\(\Rightarrow\widehat{A_1}=\widehat{E_2}\left(3\right)\)
Mà \(AB//EF\Rightarrow\widehat{E_2}=\widehat{A_2}\left(4\right)\)
\(\left(3\right)\left(4\right)\Rightarrow\widehat{A_1}=\widehat{A_2}\Rightarrow AE\) là p/g \(\widehat{DAB}\)
Bài 3:
Xét ΔCBD có CD=CB
nên ΔCBD cân tại C
Suy ra: \(\widehat{CDB}=\widehat{CBD}\)
mà \(\widehat{CDB}=\widehat{ADB}\)
nên \(\widehat{ADB}=\widehat{DBC}\)
mà hai góc này ở vị trí so le trong
nên AD//BC
hay ADCB là hình thang